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In nature, insects show impressive adaptation and learningapabilities. The proposed
computational model takes inspiration from speci ¢ structires of the insect brain: after
proposing key hypotheses on the direct involvement of the mshroom bodies (MBs)
and on their neural organization, we developed a new architgure for motor learning
to be applied in insect-like walking robots. The proposed mdel is a nonlinear control
system based on spiking neurons. MBs are modeled as a nonlireg recurrent spiking
neural network (SNN) with novel characteristics, able to nmorize time evolutions of
key parameters of the neural motor controller, so that exigig motor primitives can
be improved. The adopted control scheme enables the structte to ef ciently cope
with goal-oriented behavioral motor tasks. Here, a six-leged structure, showing a
steady-state exponentially stable locomotion pattern, i@xposed to the need of learning
new motor skills: moving through the environment, the struttire is able to modulate
motor commands and implements an obstacle climbing procedue. Experimental results
on a simulated hexapod robot are reported; they are obtainedn a dynamic simulation
environment and the robot mimicks the structures oDrosophila melanogaster

Keywords: insect brain, insect mushroom bodies, spiking neu ral controllers, learning, goal-oriented behavior

1. INTRODUCTION

Recent results and experiments performed on insects sheddigthteir highly developed learning
and proto-cognitive capabilities enabling them to adapt exiey well to their natural environment
(Menzel and Giurfa, 1996; Liu et al., 1999; Tang and Guo, 20tlitk&and Niven, 200p Modeling
insect brains is an increasingly important issue for the desigearning and control strategies to
be applied on autonomously walking robots. Within the inseaihran important paired neuropil
with higher control functions are the mushroom bodies (MB®¢ently used to model di erent
behavioral functions$mith et al., 2008; Arena et al., 20).38tudies on bees and ies identi ed
the MBs as a relevant area for associative learning and meimogor conditioning experiments
(Menzel and Muller, 1996; Menzel, 2001; Scherer et al., 200&ndiDavis, 2006 MBs are also
involved in behaviors depending on other sensory modalitige vision (iu et al., 1999; Menzel,
2001; Tang and Guo, 20Q)other types of learning such as choice behavioesi§j and Guo, 2001;
Gronenberg and Lopez-Riquelme, 2004; Brembs, &A@, as recently introduced, also in the
improvement of gap-climbing task®{ck and Strauss, 2005; Kienitz, 2R10

MBs receive olfactory input from the antennal lobes via progacheurons. The latter run in
the medial antennal lobe tract, provide input to the MB calyced aontinue on to the lateral
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horn (LH). The mediolateral and the lateral antennal lobacts One fundamental di erence between the proposed model
emerge from the antennal lobes as well, but bypass the calyasd the LSM is the presence of local connectivity among the
and project directly to the LH. The LH region controls inborn neurons within the liquid layer. This element of our model
behavior, whereas the MBs are thought to be involved in learrdeserves particular attention: in fact, the structure carrgs as a
behavior. Analysing the interaction between the di erenun&  locally connected recurrent neural network which is fagigilar
structures we investigated the emergence of interestingahe to the Cellular Neural/Nonlinear Network (CNN) structure
activities responsible for speci ¢ behaviors in insectsluding (Manganaro et al., 1999a paradigm already used for the
ies, like attention, expectation, delayed-match to sampkksa generation of complex dynamics and for controlling arti cial
and others frena et al., 2012a,b, 209)3b locomotion (Arena et al., 1999and perception phenomena
Major dynamical aspects characterizing the locust olfgctor(Arena et al., 2009 The other important characteristics of the
system were already outlinediazor and Laurent (2005Here  proposed model is related to the hardware implementation:
a principal component analysis on the ring rate of a populationin fact there are a number of analog/logic VLS| CNN-based
of PNs revealed di erent attractors for di erent odors. Thesechips available which implement digitally programmable agalo
attractors show two transients and one xed point, but treet#is computers characterized by high computational speed and
are most signi cant for an e cient odor classi cation. This analog, parallel computation capability, typically used for high
addressed for the rst time the importance of transient dyriasn  frame rate visual microprocessor&ddriguez-Vazquez et al.,
to explain and understand neural coding and information200§. However, the suitable adaptation of the MB structure
processing in the MBs. Following these results, we hypothiésizenodeled in this paper as a CNN architecture via the suitable
that the role of transient dynamics is relevant for the sepso addition of trainable read-out maps would allow for the
information coding extending the results obtained in lotus possibility to adopt a well-assessed reference hardwaredoetl
olfactory system to the fruit y. This hypothesis well matclitlw  time implementation of the proposed approach.
the organization properties of the MBs discussed\inwotny From the modeling perspective, the developed structure
et al. (2003, 2005)Their model is based on spiking neuronslinks two main ideas: high parallelism in brain processing
and synaptic plasticity, distributed through di erent layefthe and Neural ReuseA(nderson, 201)) According to the rst-
model is able to show consistent recognition and classiccabf  mentioned, sensory pathways run in parallel and concur to form
odors. In the study of Nowotny and colleagues, MBs are assumetbstract schemes of the environmental state, useful for moto
to be multi-modal integration centers, combining olfacgaaind  actions or abstract decisions. The Neural Reuse approach, on
visual inputs. As in our current model, the capabilities arethe other hand, states that the same neural structure can be
independent of the type and the source of information processedoncurrently exploited for di erent tasks. The insect MBs were
in the MBs. already addressed as centers where such characteristidsbeo
Wessnitzer and co-authors investigated the interactiorfound, and the control structure herewith introduced makaes
between MBs and antennal lobes (ALs) and proposed step forward to derive an e cient computational model dirégt
computational model for non-elemental learningVéssnitzer useful as a robot behavioral controllekrena and Patané, 20).4
et al.,, 201p Dierent levels of learning and reinforcement
mechanisms were considered at the stage of the KCs to create
a coincidence detector and non-elemental learning. Rewarg, MOTOR-SKILL LEARNING IN INSECTS
mechanisms are commonly considered for the creation of
aversive and appetitive olfactory memoriesciwaerzel et al., Among the di erent forms of neural adaptation encountered in
2003 and the role of dopamine is relevant iDrosophila animals, motor-skill learning is a fundamental capabiligeded
(Waddell, 201R We here extended this scheme to memorizeo survive in dynamically changing environments and also to
speci c parameters involved in the motor-skill learning prese cope with accidental impairments of animal's limbs.
On the basis of fruit y brain structures and on hypotheses Motor-skill learning can be de ned as the process to acquire
related to information processing and learning mechanismsMBprecise, coordinated movements needed to ful Il a task. Due
are a structure able to adapt and memorize relevant parametets the importance of this capability,sensory-motor conditiog
involved in motor learning. This improves the y's capab#i was one of the earliest types of associative learning found in
when it is trained in repeating a task like climbing over a chas cockroaches and locusts. It has been demonstrated in theatent
Therefore, a simpli ed computational model of the MB neuropile nerve cord of insects{orridge, 196%and is probably ubiquitous
was developed using a pool of spiking neurons representing thie moving animals Byrne, 2008; Dayan and Cohen, 2D11
so-called Kenyon Cells (KCs). The motor-skill learning system incrementally improves the
The computational model proposed in this paper formotor responses by monitoring the resulting performance:
motor learning takes the biological characteristics of MBs  this process guides the adaptive changes. By exploiting the
into account and, on the basis of the previously introducednvolved sensory motor loops, agents apply operant strategies
hypotheses, arrives at a neuro-computational structurelaimté  during motor learning: when a movement is performed, sensory
a Liquid State Machine (LSM) proposed biaass et al. (2002) feedbackis used to evaluate its accur&eyinbs and Heisenberg,
The information embedded in the dynamical neural lattice is2000; Broussard and Karrardjian, 2004
transferred to the lower motor layers by extrinsic MB neurons In insects there are dierent examples of motor learning
that have been modeled as read-out maps. processes that adapt motor schemes to specic tasks. For
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instance, honeybees can adapt the antennal movements twovements, searching re exes, and coordination mechagism
an obstacle after a prolonged presentation of this obstaclas important to fulll the task. A model of gap crossing
Furthermore, the use of an outside rewarding mechanisnbehavior was implemented extending a previously developed bio
dramatically speeds-up the learning processér et al., 1997 inspired network WalknetCruse et al., 1998to reach simulated
Other insect behaviors involving motor learning wereresults comparable with the biological experiments. Hereyidye
reported by Mohl (1993) he investigated the relevance ofcrossing issue was considered as an extension of normangalk
proprioception during ight in locust. In an interesting paper on behavior with only limited modi cations. In our work we reaed
Drosophilamotor-skill learning capabilities\/olf et al., 199%a  a similar conclusion though starting from quite di erent metk.
series of conditions has been identi ed for proper motor-kkil In fact the CPG for normal walking is maintained whereas only
learning. a parameter adaptation was introduced to e ciently implement
First, the y has a desired target to reach; to fulll this climbing.
aim, a number of motor programs are activated in a random The climbing capabilities of other insects like cockroaches
sequence. E erence copies of the motor programs are comparedere also considered to develop experiments on obstacle
with references and if, for a given motor behavior, a meafihg climbing and gap crossing using hexapod robaioidschmidt
correlation is found, this is applied. Other studies in thisadition et al., 201}l The presence of an actuated joint in the robot
were performed on bumblebee€i{ittka, 1998 and butter ies  body was exploited to improve the capabilities of the system
(Lewis, 198p to face with complex situations including gaps and obstacles
Behavioral studies on insects con rmed that they are abléGoldschmidt et al., 2014; Dasgupta et al., J0lkbPavone et al.
to show sophisticated and adaptive motor-control strategie§2006) the sprawled posture was a key element for solving the
requiring the joint coordinated activity among the limbs. A obstacle-climbingissue. In other cases the presence of d ke
particularly suitable experimental setup to inspect motoriéay  is a simple and e cient solution to improve power e ciency and
capabilities is the behavioral paradigm of gap crossing, rswalking capabilities in presence of obstacldsdre et al., 2002
described byBlasing and Cruse (2004nd Blasing (2006)n  In some cases hybrid legged and wheeled robots try to take the
relation to stick insects, byick and Strauss (200f9r Drosophila advantages of both solutionsiena et al., 2010
and in Goldschmidt et al. (2014)where the coackroach Whereas, these approaches exploit the mechanical structure,
capabilities were considered. Flies with a body length otblpi  other strategies instead consider primarily the adaptive
2.5mm (and with their wings clipped to disable ight) can crosscapabilities of the control structure. For instance, forvaug
gaps of up to 4.3 mm when fully exploiting their biomechanicalthe antenna motor control problem, irkrause et al. (2009)
limits. Direct observation and high-speed video analysishef t an echo-state network was applied to generate the antenna
gap climbing procedure (se€eick and Strauss, 20@nd videos movements in a simulated stick insect robot. The network was
supplied) outlined that ies rst visually estimate the gapdili  able to store speci c trajectories and to reproduce them éngat
via parallax motion generated while approaching the gap. Thersmooth transitions between the dierent solutions avaitgbl
if they consider the gap as being surmountable, they iratthe  depending on the control input provided.
climbing procedure by combining and successively improving, Distributed recurrent neural networks, working as reserso
through several attempts, a number of parameters for climbingvere also used imasgupta et al. (2013p create a forward
The hind legs are placed as close as possible near the proximabdel needed to estimate the ground contact event in each leg
edge; the middle legs are attached to the proximal side watlf a walking hexapod robot. The prediction error has been used
of the gap and arrange the body horizontally; the front leggo improve the robot walking capabilities for di erent types of
stretch out to attach to the opposite gap side. Then the middléerrains.
legs are detached from the proximal side, swing over and are Our approach belongs to this last type of strategies, since
attached to the distal side surface of the gap. Finally, the hi it takes into account primarily the adaptive capabilities of a
legs are detached and the y moves toward the other sideecurrent spiking network to solve a speci c motor learningus.
These experiments clearly show that several parameters areln fact, in our work, we considered only obstacle climbing
modi ed from their nominal values (for normal walking) and scenarios because olDrosophilalike hexapod robot does not
also combined together in several successive phases to imaxincontain body joints (i.e., as exploited ibasgupta et al., 2016
the climbing performance. facilitate also gap crossing); on the other hand it is unfaasi
Later it was shown b¥ienitz (2010)that ies improve their  to include in the robot the adhesive capabilities of y leg tips
climbing abilities when they iteratively climb over gaps bét Moreover, we assumed that the same computational structure
same width. The short-term improvements after 24 trainirigls  as that one involving the MBs for gap climbing tasks is also
within 1 min were seen in tests 20 min after training; they areinvolved in obstacle climbing. In the proposed example the
missing in plasticity mutants. Rescue of plasticity in the MBs waexternal information used to characterize the scenaricgttezed,
su cient to restore the motor-learning capacity. The ndinpat was reduced to the obstacle height (e.g., acquired through a
plasticity in MBs is a prerequisite for motor learning will beésik  simple visual processing method) in order to learn the set of
as our working hypothesis for the development of the proposegarameters that allow to ful Il the climbing task.
computational model. Experiments on gap crossing were also In particular, the MB intrinsic neurons are here modeled as a
performed with stick insects2(asing and Cruse, 2004; Blasing,spiking network working as a reservoir, able to generate fa ric
2009. In these works the authors outlined the role of single legnput-driven dynamics that is projected to other neural caste
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using read-out maps that work as MB extrinsic neurons. An

In insects, thoracic ganglia can be in charge for the geimrat

important added value obtained through the learning processf these trials {lorridge, 196%, but MBs should mediate the

consists in allowing a generalization of the learned datdact
the network can generate the suitable output signals alsojpot

selection process consisting in a statistical shaping and én th
nal choice of the successful parameters that modulate ttecha

patterns not included in the learning set by interpolating thebehaviors Kienitz, 201(. Such learning processes are the basic

memorized functions.

3. MODELING MOTOR-SKILL LEARNING

3.1. Known and Hypothesized Biological
Functions

ingredients for the implementation of a short-term working
memory.

A neuro-control block scheme model is shown kigure 1
where the main elements involved in the proposed model of
motor-skill learning are depicted. Plasticity and learning i
ubiquitous in the model due to the complexity of the brain
functions but for the aim of the proposed work we focused our

Tasks related to motor-skill learning need a specializawdn attention only on speci c parts. Therefore, we considered &l th
motor functions to optimize performance.To ful ll this aim, a interconnections to be xed except the synaptic output of the
strategy for searching for the most suitable system paramtie MBs, as will be discussed in details in Sections 3.2 and 3.3, in
be applied for modulating the leg trajectories is envisagdw T relation to the motor system (CPG). Plasticity and learningjde
generation of pseudo-random parameters constrained only b§ther blocks, including the visual sensory and pre-processing
the insect's body parameters is the initial step needed toawgr System, are not treated in this work.

the ongoing solution iteratively by trial and error. The sgdng

The central complex (CX) is an excitatory center

process will produce a subset of successful attempts used rgsponsible for behavior activations on the basis of visual a
improve the overall system performance, storing the new set ghechanosensory inputs. The input signals are here processed
suitable parameters evaluated on the basis of an internainew through a series of substructures: the protocerebral br{@§),

function.

the fan-shaped body (FB), and the ellipsoid body (BB)r{esch

Visual guided navigation

MBs P
_~— SNN
visual input /
/ .->
Visual sensory ‘/ i
system |
“'\‘ e
N XX
Reward

Parameter v CPG

Adaptation _———__

. Excitatory class | neuron

A

Evaluation

Event
detector

FIGURE 1 | Block diagram illustrating the role of different y

behavior during learning.

W» —— Fixed excitatory synapse
———# Fixed excitatory synapse

brain neuropils involved in motor control.
for the modulation of the ongoing behavior is performed by th MBs that receive reinforcement signals in form of dopamirmrgic/octopaminergic neuron activity and
elaborate the learning process using a spiking neural netwk (SNN). The robot performs a visually guided navigationahacts on the Central Pattern Generator (CPG
structure to control locomotion. A reinforcement signal igenerated for the MBs whereas a Random Function Generator (fG) is used to include uctuations in the set
of control parameters for the CPG. The SNN function is used tonemorize the temporal evolution of the modulated parameterif this improves the nal motor

. Inhibitory elass | neuron
‘ CPG neuron

7T

7?4 Linear transfer function

» Learnable synapse

Our model assumes that the parameter adaptation
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et al., 1989; Strauss, 200Moreover, the PB is directly involved The following structural elements can be outlined:

![rrl]emvx?;ﬁ(ri:ozz:ggtilct)rllsfﬁlsr?aresfoln s'zboli f‘g t?ﬁ stab;llzatlg:‘ 1. Presence of randomly distributed internal connections.
9 phan etal, 0 On the contrary the 2. Structural and functional correspondence between irgern

MBs seem have an inhibitory e ect and are fundamental for the weights, mirroring the connections within the KC latticeych

adaptive termination of behaworﬁ/(_ronz and Strauss, 20011 the output weights, standing for connections among MBs and
MBs present a large complexity at the level of the calyx, extrinsic neurons

?huee ;?ngiir?' ergir;[t P;?\%'epvis }?gd thzg 'Cn;eTgogge_fT:'olg'mzr?trg d3. Possibility of using the same neural lattice concurgentl
throuah di e?erl?t non Iinearl" ncti(?;]ps or dunamic:';llg ; in completely dierent tasks, following the Neural Reuse
9 u (or dy ysten paradigm, by separately training di erent sets of read-out

:r? dlné?ergfgo: Issio?ga;g?l%;tr; tgeredﬁa;nﬁgst of thelse rgaurct)rr: S weights. The same network can therefore model a multimodal
phy 9 i supply. ©n ne (and multifunctional) structure, as are the MB&rgna et al.,

?rtl;fr S\I/Skicﬁoa\?lll?):/fvuLo?e%;%?:gitwl;ntioﬁll:nizrr; ?)\]‘/E::‘llzbll‘le rf\;)r the 20139. We are hypothesizing that di erent sets of extrinsic
y P P EIVOUS — heurons are devoted to map di erent tasks.

system in order to address links among specic neural
substrates, their functions and specic behaviors they ardhe proposed control scheme has been implemented in a
responsible for. computational model embedded on a robot simulated in a
Learning in Drosophila melanogastéias revealed multiple realistic dynamical environment. Referring teigure 1, the
memory types and phases and recent investigations underlingdbot navigates driven by vision: the heading commands are
that not all memory processes occur in MB neuroilgl( et al., provided to the locomotion controller through external stirin
2007; Zhang et al., 20)L3 An evaluation procedure assesses the suitability of the pee
Here we hypothesize that the CX and in particular the PBactions in solving the assigned task. An event detectagérigthe
plays a role in motor learning: it performs adaptation of theevaluation process.
motor system parameters shaping the motor behavior while The reinforcement signal is passed to the MBs to evaluate
the insect performs a task. The involvement is plausible as tltbe changes generated by the RFG and used to update a set of
PB seems to control step length for directioBtiauss, 2002; motor control parameters. Successful parameter updatesntgad
Triphan et al., 201)) This variability is attained in our model (see to signi cant improvements in the climbing behavior lead to
Figure 1) through a random function generator (RFG) which memory formation. A SNN was considered as a plausible model
perturbs some relevant leg control parameters. This stratedp generate the long-term memory of the best parametersteelec
generates perturbed leg trajectories. On the basis of thecteghe during the learning process and to guarantee interpolation
results, the on-going behavior is evaluated and eventuslBs  capabilities important for the generation of feasible bebes/in
receive a reinforcement signal via extrinsic dopaminergid a situations similar to those ones encountered during theriesay
octopaminergic neurons Schwaerzel et al., 2003Memory  procedure. Finally a selector block determines if eithemealcem
consolidation occurs overnight. After consolidation, tM&s are trial can be performed or the information stored in the SNN
assumed to inhibit the perturbation provided by the RFG tocan be used for the motor actions. Among the di erent kinds of
allow the memory retrieval. The overall control system gasid  neural networks used for solving problems like navigatioar(,
and implemented, as outlined in the following constitutes al99¢, multi-link system control Cruse, 200pand classi cation,
clear example of a bio-inspired embodied, closed-loop neura lot of interest was devoted to Reservoir computing, which

controller. mainly includes two di erent approaches: Echo State Network
(ESN) and LSM Jaeger, 2001; Maass et al., 2002 previous

3.2. MB Model for Motor Learning: Working studies the idea to use non-spiking Recurrent Neural Networks

Hypotheses to model the MBs memory and learning functions was explored

. . . . (Arenacetal., 2013aThe core of the newly proposed architecture,
In order to design both a biologically plausible and a' . - , -
. . . _“inspired by the biology of MBS, resembles the LSM architecture
computationally feasible model of the MBs, the two following . - .
) It consists of a large collection of neurons, the so calledidig
hypotheses were formulated: L o
layer, receiving time-varying inputs from external sourassvell
Itis possible that di erent KCs accept di erent sensorial inputs as recurrent connections from other nodes in the liquid laye
at the level of the calyx. This assumption regarding di erentThe recurrent structure of the network turns the time-depend
sensory modalities is made in parallel to olfactory learrfiig ~ input into spatio-temporal pattern in the neurons. These patterns
etal., 2018 are read out by linear discriminant units. In the last yearble8e
Signal processing within the network takes place at twdecoming a reference point in replicating brain functioniakt
di erent levels: within the KCs we have a spiking dynamicsHowever, there is no guaranteed way to analyze the role of
within locally, randomly connected neurons, whereas, &t theach single neuron activity on the overall network dynartics:
level of extrinsic neurons, we have an external learninglege control over the process is very weak. This apparent drawback
to learn di erent tasks. This is a working hypothesis, usefuljs a consequence of the richness of the dynamics potentially
from the one hand, to computationally simplify the model, generated within the liquid layer. The side advantage ig tha
and, from the other hand, to allow the concept of Neural Reusthe high dimensional complexity can be concurrently explobite
to be directly implemented. through several projections (the read-out maps) to obtain
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non-linear mappings useful for performing di erent tasks at the This last parameter can be modulated by learning. This syoapti
same time. The proposed network diers from the structuremodel was also used to connect the lattice neurons to the dutpu
reported inArena et al. (2013ap many aspects: it consists of neurons.

a lattice of inhibitory and excitatory spiking (instead of mo The fraction of inhibitory neurons in the pool is about 10%.
spiking) neurons with a random connectivity, which is mainly The connections within the lattice are represented by a syoapt
local (instead of non-local). Moreover, the network con gtion ~ weight with a random uniform distribution in the range (0.5—
in Arena et al. (2013afor solving the motor learning problem, 1.5), the input weights are equal to 1. The weights of the read-
required a much larger network con guration. This could be out map are subject to training. The generation of the inter-
addressed to the much richer dynamics generated within th&yer synaptic connectivity depends on a probabilistic fuorcti
SNN (see Section 5.1). Inputs are here provided as currents thaf the distanceljj between the presynaptic) (and postsynaptic
through a sparse connection, reach the hidden lattice e, (j) neurons:

liquid layer). Multiple read-out maps, fully connected with the

hidden lattice, can be learned considering the error betwee PjDk G (4)
network output, collected through an output neuron for each

read-out map, and the target signal. The network details ar&here

illustrated in the next section.

3.3. Network Structure and Parameters _Gj | Inhibitory (j) | Excitatory (j) |
Following the biological hints, proposed hypotheses and Inh|p|tory (')_ 0.1 0.4
suggestions from the classical LSM paradigm, the MBs' streictu Excitatory (i) 0.2 0.3

involved in motor learning has been modeled as a Spikingénd

based network consisting of three layers: an input layerdeén

recurrent neural lattice, and an output layer. The input layer

behaves like a Iter that randomly redirects input stimuli &

reduced number of neurons in the hidden-layer (KCs lattidd)e kD2 if dj 1

connectivity percentage used in this work is 15% from the input kD1if 1<dj 2 (5)
layer to the KC layer. kDO if dj> 2

The hidden layer is a SNN (i.e., the reservoir network), veher
each unit is an Izhikevich Class | spiking neuroizi(ikevich, The parametersCij, reported in the previous table, have
2000 organized in a square topology with toroidal boundarybeen chosen according tblaass et al. (2002)The distance
connections. The regular distribution of the neurons in aarge-  d;j; D 1 is calculated, either for horizontal or vertical adjacent
shaped lattice was selected because, for computationalnssasmeurons, considering the neurons as distributed on a regular
we considered the simplest structure where we can perforgrid possessing toroidal boundary conditions. From thetietes
distance metrics. The following di erential equations deéise  above it derives that the connectivity realized within théite

the model: is local; this is an important element that facilitates a pdigan
D 0.042C 5/C 140 uC | hardware |mplem(_entat|_on of _the control system _where the
(1)  number of connections is drastically reduced and limite@ézh
®D 0.02( 0.v u) .
neuron neighborhood.
following spike-resetting condition: The time constant in Equation (3) was randomly chosen
among the values D 5, 10, 30, and 50ms. This variability
) v 0.055 improves the dynamics potentially shown by the network as will
if v 003then ¢ () be discussed in the following sections. The values of the sgnapt

time constant have been chosen to obtain signi cant dynanic
Herev is the membrane potential is the synaptic currentand  the simulation time window that is limited to 150 ms.

is a recovery variable. Izhikevich neural models are wedvkm The output layer consists of a series of output neurons,
in literature for o ering a good compromise between biologicalmodeled with a linear transfer function and fully connecteithw
plausibility and computational e ciency. the hidden lattice. The output weights are randomly initzald in

Neurons are connected through synapses: here the spikéhe interval ( 1, 1) and are subject to learning. The integration
rate from the pre-synaptic neuron is transformed into a cutren step used for the reported simulations was xeditaD 1.5ms.
for the post-synaptic one. The response of the synapses to a

pre-synaptic spike is as follows: 3.4. Learning Mechanism
The time evolution of the target signals that the network chee
“(t) D Wt= expt=), if t>0 3) to memorize is generated by shaping the lattice dynamics using
0,if t<O read-out maps. An incremental learning rule based on thet_eas

mean square algorithm is adopted to update the synaptic weights
where is the time constantt is the time passed since the lastof each read-out map. The learning process, resembling the
spike arrived at the pre-synapse awtis the synaptic e ciency. classical delta rule, depends on the lattice activity and eretior
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FIGURE 2 | Spiking activity of the lattice while generatingt  he output signal during the testing phase. Inhibitory neurons are outlined in red.

FIGURE 3 | (A) Trend of the mean square error during 100 learning trials (eghs), (B) Comparison between the expected output and the network appoximation at
the end of the 100 learning trials.

FIGURE 4 | Learning example with two different input-target pa irs: input current 5 and 30 mA. The interpolation capabilities were tested using differennputs:
5,7, 10, 13, 15, 20, and 30mA. (A) Trend of the mean square error during 400 epochs used to learthe two input-target patterns. For each epoch we provided
alternatively either one or the other input-target pair, Bwing the learning process to update the read-out weights btained during the previous learning epoch(B)
Comparison between the expected output and the network appoximation at the end of the epochs.
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between the current output and the desired target. The updatind. SIMULATION RESULTS
rule of the synaptic weights is here reported:
The analysed motor learning process consists of adopting a series
Wij(tC ) DW(t)C  z(t) E(1) (6) of perturbations on specic leg control parameters to reach a
success in the assigned task. To apply a smooth perturbation,
where is the learning rateZ;(t) is the synaptic output of the we adopted as target signal, a cosinusoidal function, whose na
neuron (,j) at imet and E(t) is the error between the network value corresponds to the parameter to be applied. In the following
output neuron and the desired target. Another possibility sists  simulations we adopted a lattice with 8 x 8 neurons that is a
of cumulating the weight variations during the simulatiome  good compromise to obtain a considerable variety of internal
window, to nally apply the cumulative result during the last dynamics. The learning process needs a series of iterations
simulation step. (here called epochs) to successfully store the information i

FIGURE 5 | Behavior of the input currents provided to the outp ut neuron from the lattice when the input layer provides a curr ent of 5 mA (A) and 30mA
(B). Inhibitory neurons are outlined in red.
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the read-out maps. In the following analysis we consideredomplication. Our case is an example to the contrary. In
100 epochs with a learning rate D 0.5. During each epoch fact, in Arena et al. (2013aponlinear nonspiking recurrent
the network is simulated for 100 integration steps. A typicaheural networks were used to model MB activity: the non-
activity of the neural lattice is shown iRigure 2 The input  spiking recurrent con guration, suitable for solving the too-
given to the network through an external current is related t learning problem was xed to 140 non locally connected units,
the information acquired from the environment and, usingeth whereas the results presented in this paper were obtained via a
learning rule in Equation (6), we can determine the weights onetwork with 64 spiking locally connected neurons in the laju
the read-out map in order to follow a target signal as shown irayer.
Figure 3

The network allows to interpolate the information acquired
during learning as illustrated inFigure 4 During the 400 5. MOTOR LEARNING: APPLICATION TO
epochs used for the learning phase, two distinct outpuCLIMBING
signals, corresponding to dierent input currentdi{ D 5 . L .
and 30mA), were learned. During the testing phase, beside®-1. Learning New Motor Activities in a
the two inputs already used in the learning phase, also othédtable Locomotion Controller
input currents were provided obtaining plausible behaviorsThe insect brain can be considered as a parallel computing
that interpolate the dynamics of the two learned targetarchitecture where re exive paths serve the basic needs for

signals. survival, whereas learned paths allow the formation of more
Figure 5Sreports the synaptic activity (Equation 3), in the form complex behaviors.
of currents generated by the lattice before learning, weigy Regarding motor activities in insects, the thoracic ganglia

the read-out map and summed over the 100 samples for all the&re mainly responsible for the generation of locomotion gait
spikes emitted by the neurons to reproduce the two target $sgnaand the Central Pattern Generator (CPG) has widely been
It can be noticed that even a lattice with a limited number ofaccepted as being the core unit for locomotion control but
neurons can produce a large variety of dynamics that can bies ne-tuning is usually achieved by sensory informatiorher
combined by the output neurons. The di erences in the synapticapproach proposed here considers the task of motor learning
time constant, play a role in increasing the richness of dyitam as that of nding a suitable way for modifying the basic motor
during the network activity. It is also evident how sensitithe  trajectories on the single leg joints so as to improve motolisski
structure is to a change in the input current provided to thein the light of novel conditions imposed by the environment.
lattice; it can generate a drastic change in the temporalgionl ~ Using a control approach, we can realize motor-skill learning
of the network dynamics. This allows for a high interpolationthrough a hierarchical adaptive controller, where, wherirfac
capability. The use of spiking networks over nonspiking ones tdovel conditions, some parameters controlling the leg joint
model nonlinear dynamics is often considered as an addition trajectories are modulated. These modulations, shaped by the

FIGURE 6 | Neural network scheme: the top layer generates a sta  ble gait pattern, whereas the bottom layer is constituted by additional sub-networks
generating the speci ¢ reference signals for the leg joints. The network devoted to control a middle leg is reported. The grameter adapted during the learning
process for the middle legs are indicated in red.
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kinematic constrains, realize novel leg trajectories Whice RBiD xjC®GHC C")y1j sy2Cis %
then applied to assess their suitability for the task. Once the ®BiD xiCsgyC(C ")y2i Ci2

former locomotion conditions are restored, these modulasio

are withdrawn and the baseline stable locomotor activity rewith yi D tanh(x)) and the parameters for each cell: D
emerges. Sets of successful parametric values are retamed0.23," D 0,51 D $ D 1,i1 D iz D 0 generate a stable limit cycle
that they can be re-applied whenever similar conditions stioul (Arena et al., 2005 is chosen to approximate the dynamics
be encountered again. The locomotion controller is made uf0 @ harmonic oscillation. The CPG network is built connegtin
of basically two networks: one is devoted to generate aestabdjacent cells using links expressing rotational matriggs), as
phase displacement among the legs; the other is shaped on tigdows:

speci ¢ kinematic structure of each leg and constituted bxesel

X
motor neuron structures, as illustrated ifigure 6. The basic cell RDf(xi,t)Ck (R(ij)x x)withi,jD1, ,n (8)
characterizing the CPG architecture is described by tHeahg joD
equations:

where the summation involves all the neurgmvghich are nearest
neighbor to the neuron; n is the total number of cells(x;, t)
represents the reactive dynamics of the i-th uncoupled nesiezn
reported in Equation (7) andt is the strength of the connections.
The sum of terms performs diusion on adjacent cells and
induces phase-locking as a function of rotational matrices
(Seo and Slotine, 20R7The presence of local connections
is an important added value because it reduces the system
complexity in view of a hardware implementation. The bottom
layer is designed based on the desired kinematic behaviiyr; i
directly correlated to the morphology of the limb. The netikor
controlling one of the middle legs is sketchedkigure 6. The
CPG neuron identi ed with the labeR2 is connected through
rotational matrices with di erent angles to a network of moto
neurons arranged in a directed tree graph that uses the same
neuron model as CPG. The block ) are Heaviside functions
and are used to distinguish, within the limit cycle, between
the stance and swing phases: this allows to associate suitabl
modulation parameters to each part of the cycle, depending on
the morphology of the leg. The signals are nally merged to
generate the position control command for the coxa, femur and
tibia joints. A detailed discussion on the CPG structure and
behaviors is reported in a previous studyréna E. et al., 20)2

The overall network stability was theoretically proven
exploiting tools from partial contraction theory on a network
made of nonlinear oscillators with Laplacian couplings. As
demonstrated in previous studies, the network for gait cohtr
has a diusive, undirected tree-graph con guration, which
guarantees asymptotic phase stability independently of any
imposed locomotion patternArena et al., 2011; Arena E. et al.,
2012.

The stable phase-locked oscillations generated in that way
are passed on to the motor neural network for each leg, whose
particular structure controls leg motion while maintaininge
imposed phase among the legs. Upon this stable basic locomotor
activity, the motor-learning controller is added, whose ride

FIGURE 7 | General scheme of the procedure followed to improve th e to nd suitable modulation of the single-leg motions to learn
robot motor-skills in a multi-stages task. Starting from Home, an event . . . . .

triggers the request of parameter adaptation for the Step 1Hat is tried until a pro_pt_e_r trajectories I_n the presence of specic n_eeds. Basicimoto
success occurs or a time-out is reached. Within the time-outriggered activities are so disturbed to nd new solutions for the Ieg
window, it is possible to evaluate the effectiveness of mufile sets of motions, thus implementing motor-skill learning.

parameters that persist for about a complete cycle of a leg.@., overtime). The

success is evaluated by a cumulated reward and, if an improvaent is 5.2. C||mb|ng Experiment

obtained, the parameter evolution is stored in the long-ten memory (i.e.,

read-out maps). The other stages follow the same procedure. Motor-skill learning in the presented multi-imb system is

applied to improve the robot capabilities in solving di erent kas
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involving multiple degrees of freedom; here, in facta neitugp  challenging task for legged robots that have to improve their
of parameters is required to modulate the basic cycling biehav climbing capabilities by learning. For a future direct comipan
in the di erent legs of the robot. with biological experiments, the new paradigm lends itself for
Among the possible tasks, in the simulation a step-climbindesting real ies. Moreover, the step climbing scenario can
scenario has been considered in the simulation. In natmsgdts be made more demanding by using slippery surfaces which
are continuously faced with uneven terrains and they adapivould reduce the advantage of the animal if compared with the
their motor responses to accomplish tasks like climbing overobot.
surmountable objects. Even ying insects, like melanogaster Step climbing for a robot is quite a complex task and
show exquisite climbing skills, since searching for foodha should involve an optimization method to adapt the
near- eld and courtship are achieved during walking. The aimjoint movements to dierent surfaces. To simplify the
of motor learning in our experiments is to improve the climbing problem, the task was split into dierent phases shown in
capabilities of a simulated robot through the modulation im&  Figure 7.
of a group of parameters used in the leg motor layer. This The approaching phase is guided by the visual system that is
simulated scenario is a realistic alternative to the gamlillg able to recognize the distance from the obstacle and its heigh
scenario used in the biological experimenisasing and Cruse, When the robots distance from the step is below a threshold,
2004; Pick and Strauss, 2005; Kienitz, 2010; Triphan et aPhase 1 is activated and the parameters of the front legs are
2010. In fact, due to the adhesive capability of the y legsadapted using the RFG to modify its movements, in an attempt
(possessing pulvilli and claws), gap climbing is an a ordabléo nd a foot-hold on the step. For sake of simplicity, a subset
task for the real insect, whereas this is extremely dicwtfa  of parameters available in the adopted CPG was subjected to
Drosophilainspired robot that cannot reach the same dexteritylearning in this phase.
as the biological counterpart. In other hexapod robots the In details, for the coxa joint the bias value, for the femunfo
presence of an active body joint, inspired by the cockroacls, wahe gain value, for the tibia joint the bias and gain valuesewe
exploited to improve the system capabilities in gap climbingselected for learning. This phase leads to a stable positimfing
tasks (Goldschmidt et al., 2034 In our Drosophilainspired the front legs on the step, with the body lifted o . The extent of
robot, due to the absence of this degree of freedom in théhe angular motion of the leg joints, caused by the modulation
body, we considered obstacle-climbing scenarios, whiehaar of the parameter pro les, is used as an index of the energy spent

FIGURE 8 | Effects of the parameter adaptation on the leg joints (only the left body side is shown). A limited number of parameters is subject to learning in
the three phases of the obstacle climbing procedure(A) in phase 1 only the front legs are involved(B) the hind legs in phase 2, and(C) both middle and hind legs in
phase 3. The effect of the parameters on the leg joint trajeoty is limited to the current phase.
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in this task and to de ne a reward function. The reward valee i A series of experiments were performed using a step that is
then compared with the previously found best value and, if ainsurmountable unless a gait adaptation is introduced: tbight
improvement is obtained, the new sets of functions are stared of the step is around 0.9 mm, whereby we chose the simulated
the SNN readout map. For the considered task we have a sindlrosophilabody length as 3.2 mm and the average height of the
lattice with one input (i.e., step height) and a total of temde center of mass as to be located at about 1 mm above the ground
out maps, one for each parameter to be learned for a speci during forward walking.

leg joint. The SNN receives as input a normalized value related The joint angular positions caused by the parameter
to the step height and the lattice dynamics generates a spatiadaptation in the anterior legs are shown kigure 8A. The
temporal spiking activity that is transformed in a continugus subsequent phase is similar: here as relevant parameters to be
non spiking signal, through the output synapses that convergadapted, the bias of femur and tibia joints of the hind legs
on the output neurons, one for each parameter that is subject tare considered to facilitate the climbing of the middle legs.
learning. The event considered in this phase to evaluate the success

FIGURE 9 | (A) Sequence of events obtained during the searching process fothe suitable parameters through the RFG(B) Distribution of the cumulative reward for
each trial; the error bars indicate the range of excursion be&een min and max value and the marker corresponds to the meanalue. The learning of the SNN is
performed only for the IDTrial 11 that is the same as reporteahi(A) because in the other success event for the third step there & no improvements for the cumulative
reward.
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and the consequent passage to the successive phase is thén the dynamic simulation herewith reported, we adopted an
horizontal position of the center of mass of the robot withintegration time dtD 0.01 s, a stepping cycle of about 1.5 s: these
respect to the obstacle. The parameter adaptation results feonditions, the parameters reach the steady state withir-[20
the second phase are depictedRigure 8B. During the third  60] integration steps. Looking at the learning process, the RFG
phase the robot elevates the hind legs on the step: this generates the new parameters to be tested for the rst phase. If
achieved by modulating the gain of the coxa and bias of théhe trial is successful the robot is re-placed to the stanpiogjtion
femur joint for the middle legs and the gain of the coxato perform a test: this assures the robustness of this new set of
and femur joint of the hind legsKigure 8Q. In the actual parameters. If the robot succeeds, it can proceed to the second
experiments the function adopted to deliver the randomlyphase, otherwise the parameters are discarded and the rsephas
generated parameter modulation on the joints is a cosinysoids repeated. The trial ends when the robot overcomes the last
however other functions, like exponentials, quarter sindspor  phase or after a given number of attempts (i.e., 15 events). If
sigmoids could be used. Actually the function reaches thadst this time-out occurs, the parameters just used for the phases are
state value in a given time window that is a portion of a steppingliscarded because they are not globally suitable for a coeplet
cycle. climbing behavior.

FIGURE 10 | Comparison between the best parameters provided by the RFG and the output of the SNN after the read-out map learning for a step of
0.9 and 1.4 mm. Moreover, the output of the network for the input of an interrediate step height is shown.

FIGURE 11 | Trajectories followed by the center of mass of the ro bot and by the tip of each leg during the climbing behavior facin g an obstacle of
1.2mm. A marker is placed in the signals to indicate when the robot capletes each phase.
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applied for the three stair steps encountered on its path with
height 1.3, 1.1, and 0.9 mm, respectively. The detectiondf ea
obstacle produces an e ect at the motor level on the basis
of the parameter adaptation mechanism induced by the SNN.
Figure 13A shows the trend of the joint position angles for the
left-side legs during the whole climbing procedure. The adapte
parameters produce changes in the leg movements during the
di erent climbing phases as illustrated Figure 13 Bwhere the
dynamics of the robot COM and the leg tip positions are reported
(see Supplementary Video 3).

The results obtained were achieved relying only on the
adaptive capabilities of the legs acquired during the leanin
phase. The body structure was considered rigid as in the
fruit y case. Including in the robotic structure active bgd
joints (Dasgupta et al., 20),5mimicking the body of other

FIGURE 12 | Snapshots of the y-inspired robot while climbing an insects like cockroaches, would only improve the robot
obstacle: the robot approaches the obstacle (A) ~ ; it reaches the step with capabilities. Therefore, the proposed control strategy can be
its front legs (B), middle legs(C), and nally with the hind legs (D). also applied to other dierent robotic structures to improve

their motor capabilities in ful lling either obstacle climbing
tasks or other similar scenarios a ordable for the robot unde
consideration.

In Figure 9A an example of a trial is reported: the robot
succeeds in the rst attempt to nd a suitable set of parameters
to complete the rst and second phase, whereas for the thirdg, REMARKS AND CONCLUSIONS
phase a series of failures both in learning and in test areioéda
until the nal success is reached (see Supplementary Video Ih this paper a bio-inspired, embodied, closed-loop neural
for a typical sequence of trials with successes and failuregpontroller has been designed and implemented in a simulated
The success in the trial can be followed by a learning proces®xapod robot that is requested to improve its motor-skills to
in the SNN depending on the overall reward value obtainedface unknown environments. Taking inspiration from the insec
In Figure 9B the distribution of the cumulative reward in a brain and in particular from the fruit y, the following hypotases
campaign is shown. For each trial the success condition fovere formulated: relevant role of MB neuropiles in the motor
each phase can be reached multiple times until the completearning task; direct transfer of the important role of trasrst
climbing behavior is tested successfully or otherwise atim dynamics in the olfactory leaning from the locust to the y lma
out occurs. If the obtained cumulative reward (i.e., sumtaf t and further extension to motor learning; design of a neuro-
rewards for each phase) after the third phase is lower than theomputational model based on a LSM-like structure for the
previously obtained values, the parameters are learned by tiraplementation of obstacle climbing in a simulated hexapod
network. robot.

To evaluate the interpolation capabilities of the network In details, a computational model for motor-skill learning was
we also performed a series of learning sessions with higheeveloped and realized in a dynamic simulation environment.
obstacles (i.e., 1.4mm) and subsequently we tested thet rodaspired by behavioral experimental campaigns of motor
with a step height never provided during learning (i.e., 1®m learning in real insects, the computational structure comsist
The best-adapted parameters obtained for the two learned stép a randomly connected SNN that generates a multitude of
heights are reported irFigure 10 together with the network nonlinear responses after the presentation of time dependent
response to the new step with an intermediate height. Thé&put signals. By linearly combining the output from the lagic
obtained results were tested with the simulated robot otitgj  neurons with a weighted function, a reward-based strategy
a success in the climbing behavior as reportedrFigure 11  allows to learn the desired target by tuning the weights of a
This depicts the motion of the robot's center of mass (COM)readout map. Looking at MBs in insects, the idea of a pool
and of the tips of each leg when climbing a 1.2mm stepof neurons enrolled to solve di erent tasks depending on the
The edge of the step is placed at 11 mm far from the COMpecic requested output is next to the concept of Neural
home position (along the y axis) (see Supplementary Vide®euse which has a number of biological evidences. The reported
2). Moreover, a series of snapshots outlining the posture aksults demonstrate that the system can learn, through arw
the y-inspired robot during the climbing task are depicted in driven mechanism, the time evolution of several independent
Figure 12 parameters related to the leg movements, to improve the robot

To evaluate the generalization capability of the contraleys  climbing capabilities when exposed to the step-climbing tabk. T
the previously learned system was tested in a di erent scenarrobot was also able to deal with step heights never presented
where a stair-like obstacle was introduced. The robot foldw before, exploiting the interpolation abilities of the proposed
the same climbing procedure as described above, repetitivetgtwork.
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FIGURE 13 | (A) Trend of the joint positions for the left side legs when the fwot faces a series of obstacles.(B) Trajectories followed by the center of mass of the
robot and by the tip of each leg during the climbing behaviordcing with multiple obstacles with height 1.3, 1.1, and 0.9 rm, respectively. A marker is placed in the
signals to indicate when the robot completes each climbing pase.
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