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Abstract— In this paper a CPG approach to locomotion
pattern generation and control in a Drosophila-like hexapodal
structure was implemented. The CPG consisted of a two-layer
network of nonlinear oscillators: the first layer is devoted to
guarantee a stable locomotion pattern, whereas the second was
designed according to the kinematic constraints of each leg.
An accurate leg motion required the synchronization control in
parallel neural networks where different oscillation frequencies
have to co-exist. A strategy based on the use of an intermittent
laplacian coupling was used to solve this issue. Numerical results
are reported, which deserve further analytical inspection.

I. INTRODUCTION

THe issue of motor control and motor learning in artifi-
cial systems is of primary importance to build efficient

and highly adaptive machines. Since the last decade a huge
effort has been paid to discover and model the rules that
biological neural systems adopt to show the surprisingly
efficient strategies for generating and controlling the gait in
animals and manage the efficient transition among different
patterns of locomotion. The activity presented in this paper
is in line with a deep study on the insect brain architecture.
In particular a huge effort has been paid recently to block-
size model a number of different parts of the fly Drosophila
melanogaster brain, to try to attain perceptual capabilities
and to transfer them to biorobots. Regarding the Neurobio-
logical studies on the fly motor control, while it is already
known where visually guided orientation control is resident,
it is not clear how the high level controller acts at the low
level, to finely modulate the neural circuitry in charge for
handling the locomotion pattern, steering activities and so
on. On the other side, behavioral experiments are in line
with the idea that the fruit fly mainly adopts the Central
Pattern Generator (CPG) scheme to generate and control its
locomotion patterns. A plausible CPG based neural controller
was then designed, able to generate the joint signals and the
consequent stepping diagrams for the fruit fly.The network
designed was used to control an artificial model of the fruit
fly built using a dynamic simulation environment.

In literature several CPG-based central structures were
developed and applied to different robotic platforms [13].
The use of dynamical oscillators is also commonly used
to represent the joint activity of a whole neural group and
the different topological links among the oscillators give
the opportunity to derive a rich variety of robot behaviors
[5]. The various gait types are obtained imposing different
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phase displacements among the oscillators, which however,
have to be synchronised. However, only a few works deal
with the problem of stability of the obtained gait, which
is indeed a crucial issue. In the proposed work a network
of coupled oscillators is used to control the 18 DOFs of a
drosophila-like structure. At the aim to create a stable gait
generator, a two layer structure is used to uncouple the gait
generation issue to the low level actuation of the legs that
present different peculiar kinematics structures. To guarantee
the stability of the locomotion gaits, the partial contraction
theory [1] has been suitably applied. The interesting aspects,
exploited in the paper, refer to the proof of convergence
to every imposed gait thanks to the tree structure of the
proposed network. Moreover, controlling the single legs,
designed so as to kinematically mimick the fly limbs,
implies the needs of hosting in the same network, oscillators
with different frequencies, which need to be synchronised.
This poses a new methodological problem, neved faced in
literature. In this paper a pulse-based laplacian connection
is introduced to handle with the phase-locking of different
oscillation frequencies within the network. The numerical
results reported deserve further mathematical analysis.

II. THE NEURAL NETWORK FOR LOCOMOTION
CONTROL

The neural network driving locomotion in our model
is hierarchically organised in two different interconnected
layers: a lattice of neurons devoted to the gait generation
through the definition of the desired phase displacements
among the legs and a layer constituted by several motor
neuron structures, as illustrated in Fig. 1.

Fig. 1. Neural network scheme: the top layer generates a stable gait
pattern, whereas the bottom layer is constituted by additional sub-networks
generating the specific reference signals for the leg joints.



The basic cell characterizing the CPG architecture is
described by the following equations:{

ẋ1,i = −x1,i + (i+ µ+ ε)y1,i − s1y2,i + i1
ẋ2,i = −x2,i + s2y1,i + (i+ µ− ε)y2,i + i2

(1)

with yi = tanh(xi) and the parameters used to perform a
stable limit cycle for each cell are: µ = 0.23, ε = 0, s1 =
s2 = 1, i1 = i2 = 0 [2]. Note that the µ value is chosen
to make the ratio between the slow and the fast part of
the dynamics of the limit cycle next to one, to approximate
a harmonic oscillator. The dynamical behavior of the CPG
network is determined by connecting adjacent cells through
links defined through rotational matrices R(ϕ), according
to the global equation:

ẋi = f(xi, t) + k
∑
j ̸=i

(R(ϕi,j)xj − xi) with i, j = 1, · · · , n

(2)
where the summation is extended to all the neurons j imme-
diately adjacent to the neuron i; n indicates the total number
of cells; f(xi, t) represents the dynamic of the i-th uncoupled
oscillator and k is a parameter determining the strength of the
connections. Moreover, the sum of terms performs diffusive
couplings among adjacent cells and induces phase-locking
directly depending on the imposed rotational matrices [1].
On the basis of equation (2), the dynamics of the whole
system performing the phase-shift synchronization can be
written as:

ẋ = f(x)− k · L · x (3)

where x is the state variables vector (x1, · · · , xmn)
T , with

m is the order of a single cell (m = 2 in the treated
case); f(x) = [f(x), · · · , f(x2n)]

T is the dynamics of the
uncoupled system; L is the coupling matrix built up of blocks
Lij ∈ RmXm, defined through the following relations:

1) Lij = −R(ϕij) if the i-th node propagates the diffu-
sion to the adjacent j-th node;

2) Lji = −R(−ϕji) and Lij = −R(ϕij) in case of
bidirectional connections (as in the network in Section
II-A), Lji = 0 otherwise (as in the network of Section
II-B);

3) Lij = Lji = 0 if nodes i and j are unconnected;
4) Lii = di · Im ∀i = 1, · · · , n where di is the

unweighted degree of the i-th node.
Being the connection matrix L defined as a function of
the imposed phase shift among the oscillators, L imposes
a particular locomotion pattern through the associated Flow
Invariant Subspace M (see [1], [3] for details).

A. High-level network for gait control

This network consists of a 9-neurons tree structure with
bidirectional connections (see Fig. 1) in which a central
neuron chain, acting as backbone, splits into a left and
right side, recalling, in a topographical way, the anatomical
symmetry of the 6-legs insect structure. As just demonstrated
and widely discussed in previous works [3], the structure
has a diffusive, undirected tree-graph configuration, which
was demonstrated to guarantee asymptotic phase stability

independently on the specific locomotion pattern. In fact,
under these hypotheses, once the topology is fixed (in terms
of nodes and links), the network converges exponentially to
any arbitrary flow invariant subspace M if:

k · λ1 > supxi,t
λmax

(
ϑf

ϑx
(xi, t)

)
(4)

where λ1 is the algebraic connectivity of the graph associ-
ated to the network [1]. This relation provides a sufficient
constraint between the Jacobian dynamics of the uncoupled
system and the coupling forces that assure a stable steady-
state condition.

B. Low-level network for motor command generation

The high-level network in Fig. 1 refers to the gait control
in a generic hexapodal structure; it is used to impose specific,
stable phase displacements among the legs. On the other
hand, the bottom layer is designed depending on the desired
kinematic behavior, directly correlated to the morphology
of the limb. The implemented approach is different with
respect to the work in [4]. There, the highly symmetrical
characteristics of the robot 3-DOF legs allowed to obtain the
desired motion of each single leg segment, simply associating
a neuron to each leg joint. The hexapodal structure here
considered, while possessing 3-DoF legs, is asymmetrical
and characterised by higher dexterity, so a further effort is
requested. The low-level network controlling the limb motion
is constituted by a certain set of motor neuron oscillators,
characterised by different frequencies, that directly innervate
the muscle fibers. As in the biological case, the motion of a
leg is the result of a number of different neural subnetworks,
acting as motor units innervating single muscular units [6].
The overall dynamics of these neural groups generates a
kind of motor primitives whose combination leads to the
emergence of the desired leg motion. Within the low-level
network, neurons are organised in groups of isofrequen-
tial oscillators: coupling among these groups takes place
through monodirectinal connections, either descending from
a specific node of the high-level CPG structure acting as
driver, or coming from another isofrequential group: this
monodirectional link allows maintaning each group with
its own oscillation frequency. The choice of using here
monodirectional rather than bidirectional connections, unlike
the CPG network, allows to maintain the asymptotically
stable synchronization of the CPG neurons, guaranteed by
the Partial Contraction Theory [1]. This is a need for our
aim, since, when analysing the behavioral motion of the
different joints in an accurate leg model, some of them
move at multiples of a given basic frequency, maintaining,
at the same time, a specific phase locked synchronization at
particular time instants. This can be observed also in real
insect motion.

In particular, let us suppose that the low-level network
is characterized by two subnets of neuron oscillating at
different frequencies. Let A and B be the root neurons
for each subnet, and let fA and fB their frequencies, re-
spectively, as depicted in Fig. 2. The neuron A acts as the



‘master’, and it is desired to be synchronised with neuron
B, (the ‘slave’). We suppose that the only link between
two sub-networks is that one connecting neuron A and B,
unidirectionally. Experimental results, reported in Fig. 2 refer
to the case when nodes A and B are characterised by
frequencies fB = 2fA. The upper panel of the figure reports
the numerical simulation results: for a suitable value of the
connection gain kA,B , it is possible to synchronise the two
neurons (and so the two subnetworks) with the two different
frequencies, if we allow the Laplacian effect to take place
only when the amplitude of the unit A signal overcomes a
given threshold. This gives rise to a quasi-impulsive coupling
action, and therefore the action of one oscillator on the other
approximates that one of a spiking neuron. Fig. 2 shows
the two limit cycles phase locked in the highest amplitude
region of the master signal. More in details, the equations
characterizing the dynamics of the motor-neurons A and B
are:

ẋA = f(xA) + k · (R0 · xCPG − xA)
ẋB = f(xB) + kA,B · (R0 · xA − xB) · T (xA)

(5)

where

T (xA) =

{
1 if x1,A ≥ θ
0 otherwise (6)

with θ = 0.95, where xA (xB) is the state vector of neuron
A (B), xCPG is the driving signal coming from the CPG
network, and kA,B is the control gain. As a whole, this leads
to a new particular form of Laplacian connection that we
could define as ‘intermittent Laplacian’.

Fig. 2. Neurons with different frequencies (fB = 2fA) can be
synchronized in phase using an intermittent laplacian connection.

In addition, both strategies of considering monodirectional
connections and of adopting an intermittent laplacian cou-
pling, allow to preserve the natural frequency within each
subnet. When neurons are coupled with bidirectional links,
instead, due to the effect of the imposed phases, the different
frequencies tend to be compensated and the network globally
reaches an average oscillation frequency. In previous studies
[7], the interest was devoted to find the relation between
the intensity of the frequency of a driver node and the
consequent re-adaption of the network in terms of frequency
and phase displacements among the neurons. The Partial
Contraction Theory gives a mathematical tool to establish

the sufficient condition to reach the convergence to a desired
flow invariant subspace among neurons with the same fre-
quency. Here, we deal with groups of neurons with different
frequencies where a master-slave topology is considered to
avoid the convergence towards a mean frequency value in
the whole network. For this reason we apply monodirectional
and intermittent connections. Regarding the phase synchro-
nization among neural nets possessing different oscillation
frequencies, actually we have no analytical proof. However,
in literature similar problems were dealt with [8] referring
to phase resetting oscillators where the phase dynamics is
related linearly to the state variable dynamics. In that case it
was possible to derive analytical conditions for the trapping
of the various frequencies within one unique oscillation
period. This is not our aim, but nevertheless the following
concept of instantaneous synchronization can be adopted.

‘“Definition [Instantaneous Synchronization] [8]: two os-
cillators A and B are defined to be instantaneously synchro-
nized if their phases return to zero at some point in time, i.e.
ϕA|t = 0 ⇔ ϕB |t = 0. ”

This definition states that the synchronization will occur in
all the time instants when the slower oscillator resets. In our
case we do not have resetting oscillators, but nevertheless we
can select a small portion of the slower oscillator and impose
synchronization only in that small time interval. Numerical
results confirm the existence of a suitable gain K for which
the instantaneous synchronization succeeds. We are actually
investigating on analytical conditions.

III. DESIGN OF THE MOTOR NEURAL NETWORKS

As introduced above, the low level networks are built
up by a certain number of synchronization groups, each
one characterized by a given frequency, coupled through
intermittent laplacian connections. The weights associated
to the interneural links, the biases and the gain parameters
are selected to obtain the desired leg kinematic motion.
Some of these parameters could be learned to obtain adap-
tive locomotion strategies, starting from the basic gait here
studied. In the next subsections we describe firstly the real
morphology of the fly and the expected kinematics of the
limbs compatible with behavioral observation. Subsequently,
the configuration of the whole low-level network performing
the desired dynamics is discussed.

A. Mechanical model and Kinematics of the structure

The mechanical scheme controlled by the neural clusters
in the bottom layer (Fig.1) is inspired by the biological
structure of the fruit fly Drosophila megalonaster, depicted
in Fig. 3. Differently from the work reported in [4] here
the legs are fairly different one another, to perform different
functions: targeting through the anterior legs, support through
the median legs and forward thrust through the hind legs. All
legs are connected to the body thorax, in the three thoracic
sections. As also shown in Fig.3 and Table I, the key aspects
of the design regard the morphology of each limb, i.e. the
size of the coxa, femur and tibia leg sections, and the other
characteristics like the angular position of the limbs with



respect to the body, the orientation and movements of the
joints and the maximum extension reachable for each joint.
It can be drawn that to perform an efficient protraction, the
front legs have to be oriented forwardly of about 27o; to help
support and equilibrium of the structure the middle legs are
maintained orthogonally to the central axis of the body and
to facilitate the forward pushing the rear legs are oriented
backwards.

Moreover, in the experimental observations schematically
reported in Fig. 3 (a), the trajectories of the stance phase
for the Drosophila have a direction roughly parallel to the
body orientation and the trajectories of the three legs develop
at different distances from the body axis: the limit cycles
spanned by the tips of the front and hind legs are closer to the
body, whereas that one of the middle leg is further outside.
The accurate design of the kinematics of the legs allowed to
obtain the regular oscillations for each leg reported in Fig. 3
(b) (c) and (d). The design was performed in Matlab. Each
leg is made up of the coxa (the basal segment), the femur (the
largest segment) and the tibia (the most distal segment). The
sizes of the model elements are scaled on the real structure
and are reported in table I for each thoracic segment.

The articulation of the leg is controlled by the three
joints, connecting the body-coxa, coxa-femur and femur-tibia
links. The coordination among the joints of the same leg is
directly dependent on the structure of the limbs, with higher
complexity for the fore and hind legs, these being more
inclined towards the body reference than the median one.

Link Front legs length Middle legs length Hind legs length
Coxa 0.1 0.1 0.1
Femur 0.3793 0.4167 0.4065
Tibia 0.46 0.6 0.67

TABLE I
LENGTH (IN MM) OF THE THREE LEG SEGMENTS (COXA, FEMUR AND

TIBIA) FOR THE DIFFERENT THORACIC SECTIONS.

Fig. 3 outlines the trajectories during the stance and the
swing phases. For each limb, the stance phase, developing
from the Anterior Extreme Position (AEP) to the Posterior
Extreme Position (PEP), and the swing phase, from the PEP
to the AEP, take both the 50% of the period of a complete
cycle, recalling the basic locomotion cycle of the real insect.

From the kinematics of each leg, an accurate inverse kine-
matic analysis was performed to inspect the corresponding
joint signals that will be used as control references. The
results are reported in Fig. 4. Analyzing the trend of these
signals, it is evident that different activation frequencies
underlie the action of the joints.

In particular, starting from the simplest configuration in
Fig. 4(b), the kinematics of the middle leg is characterized
by the effect of a periodic signal driving the coxa joint
and two other signals, the femur and the tibia one, the
latter having double the coxa frequency. It is important to
notice from 4 that coxa signal evolution identifies the stance
phase during the rising edge and the swing phase during the
falling edge, whereas the femur and tibia joints synchronize

(a) (b)

(c) (d)

Fig. 3. (a) Arrows approximate the trajectories of the limb tip during the
stance phase in forward locomotion. The circles and the rectangles indicate,
respectively, the AEP and the PEP and thus the start of the stance and swing
phases. It can be noticed the different kinematic configuration required for
the legs in the three thoracic segments. (b)-(d) Limit cycles obtained for the
anterior (b), median (c) and hind (d) leg. The duty cycle between stance
and swing phase is about 50% to guarantee a sufficient support phase also
with fast gaits such as the alternating tripod.

the articulation of the couple femur-tibia during these semi-
periods. The articulation of the femur joint, connecting the
coxa and femur links, must be approximately constant during
the stance phase to maintain a constant clearance, whereas it
can have higher excursions during the swing phase to allow
the median leg position to fly back towards the AEP. The
tibia joint, connecting femur and tibia, instead, is activated
by a sinusoidal function reaching the maximum value in
correspondence of half period of both the stance and the
swing phases. It consequently reaches the minimum value
during the transition from the stance to the swing phase and
vice versa. This signal has therefore twice the frequency of
the coxa joint motion. The movement of the middle legs,
connected to the L2 and R2 neurons of the top layer network,
will be stimulated by the concurrent action of the coxa, femur
and tibia joints. The desired kinematics of the front limbs is
obtained by the joint control signals reported in Fig. 4(a).
Similarly to the previous case, the harmonic movement of
the coxa defines the duration of the stance and swing phase,
but this configuration is more complex than the median one
since in this case the legs are forwardly inclined. Femur and
tibia control signals, in fact, are built in order to perform a
wider extension of the limbs when moving between the AEP
and the stance Middle Position (MP) than in the remaining
path to the PEP. Let us focus at first on the desired trajectory
during the stance phase. In the path from AEP to MP, the
edge of the femur control signal falls to be closer to the
body, whereas in the phase between MP and the PEP, the
same signal must be approximately constant to maintain



(a) (b)

(c)

Fig. 4. Input signals for the coxa, femur and tibia joints in the front
(a), median (b) and hind (c) legs. The coxa signals are harmonic and
isofrequential in the three legs whereas the femur and tibia signals are the
result of the composition of signals at different frequencies. The gain on the
amplitudes and the phase displacement among the joint signals depend on
both the working space of each joint and the desired kinematic behaviour.

the trajectory parallel to the body. The signal activating the
femur-tibia link, instead, grows during all stance phase but
with different slopes. In particular, in the AEP-MP phase the
signal grows faster than in the MP-PEP path. Observing now
the swing phase, it can be noticed that in the PEP-MP path
the femur and the tibia trends are similar, whereas in the MP-
AEP path the extension of the two joints are complementary.

Similar considerations hold in the case of the middle
leg inverse kinematics (Fig. 4(b)) where the presence of
multiple frequencies can be clearly appreciated. Finally, the
kinematics of the hind leg is determined by the signal joints
reported in Fig. 4(c). As for the other legs, the coxa joint acts
as the reference signal for the stance and the swing phase.
The pushing role of the posterior legs leads to design the
femur and tibia control signals isofrequential to the coxa
joint. In fact, during the stance phase, from the AEP to
the PEP, the femur articulation follows the trend of the
coxa, whereas the tibia articulation is in opposite phase with
respect to the coxa control signal. During the swing phase,
instead, the femur continues to follow the coxa trend, though
with different slopes.

B. Muscle Fibers Activation by Synaptic Activity

After these results the next step was to design a neural
architecture able to generate the joint signals for each leg,
leaving the coordination among the legs to the CPG network
already designed. In order to obtain the kinematic behavior
illustrated in the Fig.4, the following primitive functions
PFs have been designed as control signals coming from

the neural networks associated to the front, middle and hind
limbs:



PFA,C = IA,C + aA,C

PFA,F = IA,F + (a1A,F + a2A,F + a3A,F + a4A,F )
PFA,T = IA,T + (a1A,T + a2A,T )
PFM,C = IM,C + aM,C

PFM,F = IM,F + (a1M,F + a2M,F )
PFM,T = IM,T + (aM,T )
PFP,C = IH,C + aH,C

PFP,F = IH,F + (a1H,F + a2H,F + a3H,F + a4H,F )
PFP,T = IH,T + (a1H,T + a2H,T )

(7)

where
aA,C = KA,C ∗ Xf,A

a1A,F = (K1A,F ∗ X2f,A,ϕ2
+ B1A,F ) ∗ (H(−XA)) ∗ H(dXA)

a2A,F = (K2A,F ∗ X2f,A,ϕ1
+ B2A,F ) ∗ H(XA) ∗ (H(−dXA))

a3A,F = K3A,F ∗ H(XA) ∗ H(dXA)
a4A,F = (K4A,F ∗ X2f,A,ϕ2

+ B4A,F ) ∗ (H(−XA)) ∗ (H(−dXA))
a1A,T = (K1A,T ∗ X2f,A,ϕ1

+ B1A,T ) ∗ (H(−XA))
a2A,T = (K2A,T ∗ Xf,A + B2A,T ) ∗ H(XA)
aM,C = K1M,C ∗ Xf,M

a1M,F = (K1M,F ∗ X2f,M,ϕ3
+ B1M,F ) ∗ H(dXM )

a2M,F = (K2M,F ∗ X2f,M,ϕ4
+ B2M,F ) ∗ (H(−dXM ))

aM,T = K1M,T ∗ X2f,M,ϕ5
+ B1M,T

aH,C = KH,C ∗ Xf,H

a1H,F = (K1H,F ∗ Xf,H + B1H,F ) ∗ H(XH) ∗ H(dXH)
a2H,F = (K2H,F ∗ Xf,H + B2H,F ) ∗ H(dXH) ∗ (H(−XH))
a3H,F = (K3H,F ∗ Xf,H + B3H,F ) ∗ (H(−dXH)) ∗ H(XH)
a4H,F = (K4H,F ∗ Xf,H + B4H,F ) ∗ (H(−XH)) ∗ (H(−dXH))
a1H,T = (K1H,T ∗ Xf,H + B1H,T ) ∗ H(XH)
a2H,T = (K2H,T ∗ Xf,H + B2H,T ) ∗ (H(−XH))

(8)

where the subscripts A,M and H indicate, respectively, An-
terior, Middle and Hind thoracic segment, the subscripts C, F
and T refer to the Coxa, Femur and Tibia segments of each
limb. X is the signal coming from the high-level network
node corresponding to that limb. This is the reference signal,
imposing the frequency at which the neurons belonging to
the same synchronization group have to work. In the same
way, each limb subnet is enslaved to a neuron in the CPG
layer: this imposes the overall phase shift, thus preserving
the locomotion pattern stability. H indicates the Heaviside
function of the reference signals, such that if X ≥ 0 then
H(X) = 1, else H(X) = 0. The bias and gain values,
identified by the K, A and B parameters, respectively, are
weights related to the working space of the joints. The term
d stands for the time derivative operator.

It has to be noticed that these purely mathematical signals
can be simply produced as neuron outputs, following our
approach with phase rotation matrices: for example the time
derivative is a 90o phase shift, the Heaviside function is
realised by a threshold interneuron, its complementary by
another threshold interneuron phase shifted by 180o.

All these functions describe the cumulative effect of the
interaction among the neurons of the low-level network
with strong dependence with the temporal evolution of the
reference nodes. In the low-level network, in fact, each sub-
network is synchronized with the reference node associated
to a specific limb (as illustrated for R3 in Fig. 1) in order
to maintain the imposed stable locomotion pattern. Two
different frequencies coexist in the subnet. In particular, fo-
cusing upon the median limb, the neural network performing
the primitive functions for each joint is constituted by two
subnetworks: one with the same frequency as the higher layer
CPG network and directly connected to it (grey filled neurons



in Fig.5), and another subnetwork having double frequency
(orange neurons).

Fig. 5. Neural Network innervating the middle leg. Two subnets with
different frequencies are instantaneously synchronized through a pulse
laplacian connection with zero phase delay (dashed arrow). The other rota-
tional matrices lock at given phases the connected neurons. The Primitive
Functions (PFM ) represent the driving signals for the corresponding coxa
(C), femur (F) and Tibia (T) joint, respectively.

C. Remarks and conclusions

To artificially reproduce the accurate kinematic motion
of each leg, a large number of parameters were identified,
each one controlling a specific portion of the resulting Prim-
itive function. In view of adaptive and learning locomotion
strategies, some of these parameters can remain constant,
some others can be adjusted at the level of local reflex,
some others can derive from specific brain areas, like the
Central Complex for orientation and step length control [10].
Moreover, differently to [4], the control signals are not di-
rectly obtained from the state variables of the corresponding
neurons: they are the result of the interaction of a set of
neurons belonging to the neural groups that innervate a given
muscle. Also PFM,F in Fig. 5 results as a combination of
the sign of the X signal derivative, through the Heaviside
function and its complementary. These two functions are
mutually exclusive and govern the dynamics of the femur
and tibia joints during protraction and retraction, respectively.
So they remind the activation of the flexor and extensor
antagonist muscles acting on the femur and tibia joint, as in
the biological counterpart. The modulation of the associated
parameters could therefore be took into account for a fine
tuning of the leg dynamics. Therefore the network designed,
in spite of its apparent complexity, can allow a high degree
of adaptability: in fact the high level CPG is unaffected if
one or more legs are temporarily disconnected, to face with
low level sub tasks, like obstacle avoidance or searching
for ground support: this is assured by the monodirectional
connections. Moreover, the last subtask can be efficiently
solved modulating some of the parameters of the primitive
functions, like the offsets (IM,C , IM,F , IM,T ) or the other
gains. Once solved the subtask, the leg can be restored to

the default cyclic behavior and connected to the high level
CPG. So the CPG could be able to show the advantages of
a decentralised locomotion control.

Very recently, light begun to be shed on the details of
the architecture of the fly leg motorneurons [6]. The spatial
organization of these neurons is highly correlated with mus-
cle innervation, making a myotopic map, in which, among
the others, it was discovered that motorneurons innervating
antagonistic muscles group together in clusters of activ-
ity, reinforcing our implementation of the concurrent and
mutually exclusive activation of motorneurons, alternatively
controlling flexion and extension within the same cluster.

Summarizing, in this paper a CPG approach to loco-
motion pattern generation and control in a Drosophila-like
hexapodal structure was implemented. The peculiarity of
the design dealt with the highly unsymmetrical structure
of the leg shapes and arrangement throughout the body.
Each leg was kinematically modelled, a neural controller
was designed which revealed similarities with very recent
neurobiological findings in the fly motor neuron organization.
Another peculiarity consisted the presence of different fre-
quencies in oscillators used for joint control. The stability of
the locomotion pattern generator is theoretically guaranteed
through the partial contraction theory. A control strategy
using an intermittent Laplacian connection between neurons
is adopted for the synchronization of neurons with different
frequencies.
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