
SARSA-based reinforcement learning for motion planning
in Serial Manipulators

Ignazio Aleo, Paolo Arena and Luca Patané.

Abstract— In this paper we investigate an application in
which a serial manipulator is engaged in a task driven state
transition learning through a set of basic behaviours (i.e.
inherited actions). The approach is based on an extension of
the SARSA reinforcement learning algorithm.

In particular, the case under study consists in the control
of the end-effector position sequences of a custom serial
manipulator (i.e. the MiniARM) in a constrained shortest path
problem.

In order to test performances of the overall algorithm and the
improvement beyond the state of the art, those strategies have
been implemented both in simulation and in a real hardware
environment. Results have been analyzed in terms of learning
time and iterations needed to complete the assigned task.

I. INTRODUCTION

Reinforcement Learning (RL) is the straightforward learn-
ing paradigm for bio-inspired architectures.

In the last few decades the state of the art for robot learning
has moved towards RL [1] [2]. Unfortunately in robotics the
common trial-and-error practice is not so trivial: the low-
cost mechanical structures have very different compliance
and timing capabilities from their biological counterpart. A
large number of different approaches have been proposed to
overcome this kind of problems [3] [4].

Generally speaking, the underling idea is to use compu-
tational power to minimize necessity of real environment
interaction. Eligibility traces, model based approaches (for
instances Prioritized Sweeping [5]) and probabilistic methods
(Ant-Colony Optimization [6]) increase computational costs
in order to reduce the number of environment examples
needed [7] [8]. A commonly used strategy is to perform
multiple iterations based on past observations between two
real experiences [9].

In this paper an application of a modified version of a sim-
ple State-Action-Reward-State-Action (SARSA) algorithm is
presented in order to cope with a discrete shortest path
problem with a redundant serial manipulator.

The task taken into consideration includes a robotic arm
equipped with a pointer as end-effector. The robot, hereafter
referred to as the agent, should learn which is the best way to
position the end-effector on all the black squares in a given
custom checkerboard.

Multiple levels have been used to hierarchically control the
hardware. A high level, behavioral, control is first performed
in a host computer. The algorithm output (i.e. a discrete
checkerboard position) is then given as input to a kinematic
inversion algorithm able to cope with the redundant serial

Ignazio Aleo, Paolo Arena, and Luca Patané are with the Dipartimento
di Ingegneria Elettrica, Elettronica e dei Sistemi (DIEES), Universitá degli
Studi di Catania, Italy (email: {ialeo,parena,lpatane}@diees.unict.it)

structure. A low level control is then performed both in a
custom designed control board and in the distributed control
system of the robot.

As in any other Q-learning based algorithms, for a given
state and a policy, the next action is chosen, reward is
evaluated, and therefore the action-value (Q-function) for
state-action pair is updated iteratively. The particular reward
function determines the overall behaviour of the agent.

In contrast to what previously discussed, for a given
state the most suitable action (i.e. the one that leads to
the estimated best next state) is simulated and through
the uncomplete model the estimated reward is assigned.
Furthermore the learning process is strongly accelerated with
action simulation performed by the agent based on what
previously learnt: starting from a particular state the agent
explores multiple parallel simulated trials and respectively
evaluates rewards creating a tree of all chosen possibilities.

It is clear that the problem is better achieved via n-step
prediction algorithms [9]. Eligibility traces have been used in
order to further keep trace of meaningful state-action pairs.

The system performances have been evaluated using the
Ant-Colony Optimization meta-heuristic method [6], that is
one of the most suitable approaches for this kind of problem.

In the first section, the considered general SARSA model
is introduced. In the second section, an improvement with
a model-based prediction is discussed. Finally, in the other
two sections the experimental architecture is presented and
the experimental results are shown.

II. MODEL DESCRIPTION

The problem of the shortest path is herewith introduced
in a unconventional task-driven way. The environment is a
modified checkerboard with white and black squares: when
the agent is on a black (sv = 0) square, the selected area
changes its state to white (sv = 1). The goal is reached
when all the squares become white. Both the state and the
action spaces are discrete. In particular, state set S includes
all the bistable M ×N checkerboard squares configurations
together with agent position for a total of ns possible states:

S = {s1, s2, ..., sns} with ns = M ·N · 2M ·N . (1)

The actions from action set A can drive the end-effector to
one of all possible squares:

A = {a1, a2, ..., ana
} with na = M ·N. (2)

A representation of one possible state from the state-space
set S is depicted in Fig. 1. As previously described, for a
given state all the possible actions a ∈ A are those sketched
in Fig. 2. Therefore considering the actual state s and what



Fig. 1. Example of four by two checkerboard together with the end-effector
position representation (circle).

Fig. 2. Example of all possible actions (arrows) in a four by two state-space
checkerboard by the agent (circle).

since now learned, the most rewarding action a∗ is chosen,
using Q-learning,with the following method:

a∗ = argmaxa(Q(s, a)). (3)

In contrast to what happens in Q-learning, shown in equation
(3), in SARSA-based algorithms the performed action is
not always the one with the highest value in Q-function
(for a given state). For instances, the so called e-greedy
policy can be followed by the agent as described in the next
pseudo-code block.

...
if (rand < ε)
then a∗ ← randint([1, nA]);
else a∗ ← argmaxa(Q(s∗, a));
endif
...

The simplest SARSA block diagram is shown in Fig.
3 where, after parameters and variables initialization
performed by the init block, the (s, a, r, s∗, n∗) vector is
collected iteration after iteration. Moreover the action value
function Q is updated at each iteration as in the following
assignment:

Q(s, a)← Q(s, a) + α(r + γQ(s∗, a∗)−Q(s, a)), (4)

where α is the step-size of the learning process, r is the
current step reward and γ is the discount factor while s∗ is
the next step state.

Considering that the largest part of the movement time
of the real manipulator from one cell to another is not
dependent on the distance, though white cells are not a phys-
ical constraint, the best path should avoid them. Therefore

Fig. 3. Block diagram of single episode cycle. After an initialization phase
implemented in the init block, the (s, a, r, s∗, n∗) vector is built at each
iteration.

the problem can be easily split into two sub-problems: the
agent should learn to avoid white squares and than learn the
shortest path through black squares.

As can be easily understood, the former is not suitable for
one-step prediction: too many iterations are needed to obtain
low errors (i.e. big deal for real robot implementation).

A. Eligibility Traces

In order to reduce the number of iterations despite the
increase in computational cost, eligibility traces have been
introduced [9] [10].

When a state-action pair (s, a) is visited, the corresponding
value in eligibility function is updated as follows:

e(s, a) ← e(s, a) + 1. (5)

The Q-function update is modified as in the following
equations:

δ = r + γQ(s∗, a∗)−Q(s, a), (6)

and then for all state-action pairs (s, a)

Q(s, a) ← Q(s, a) + αδe(s, a), (7)
e(s, a) ← λe(s, a),

where λ is the eligibility discount factor and α is again the
step-size of the learning process. From a computational point
of view the straightforward application of eligibility trace
implies a single episode problem dimensionality to increase
from O(steps) to O(steps · ns), where steps is the number
of action performed in order to reach the goal.

Therefore in the real application a modified version of the
algorithm has been implemented to hold information about
the (s, a) pairs for which the following inequality is verified:

e(s, a) ≥ ε with ε ≥ 0. (8)

This increases the complexity from O(steps) to O(steps!)
(it must be noticed that typically ns � steps).

B. Reward cost function

The definition of the reward function is an important aspect
of the algorithm in the proposed application. For shortest path
solution, the coefficient γ is set to γ = 1, as suggested in
[9], and a negative reward for all non-terminal states is given,
while zero reward is assigned for goal achievement.

The cost function used as reward is state-dependent and
evaluated through the following system:

r =

−(x− ax)2 − (y − ay)2 if sv = 1,

−vb with vb ≥ 0 if sv = 0,
(9)



Fig. 4. Cost function part for initial state depicted in Fig. 2 in the case of
movement towards black squares with sv = 1 (on the left). State-dependent
overall cost function used as reward (on the right).

Fig. 5. Block diagram of cycle with state-to-state prediction. After an
initialization phase implemented in the init block, the (s, a, r, s∗, n∗) vector
is built each iteration, model Qs is updated and agent prediction is evaluated
by the prediction block and darker reward block.

where it is clear how all non-terminal states are negatively
rewarded according to the squared step length, in order
to progressively reduce overall traveled distance. Actions
that lead to a white square (i.e. in which sv = 1) are
negatively biased to further increase convergence speed of the
algorithm. An example of the cost function used as reward
is shown Fig. 4.

III. PREDICTIVE MODEL

As already described, the model has been enhanced to
improve the performances in terms of number of episodes
needed for a complete learning, in order to meet real hard-
ware timing necessities. The approach consists in reducing
the number of real actions needed for learning by introducing
a virtual agent that will simulate the outcomes of the envi-
ronment based on what previously learnt by the real agent.

A state-to-state transition matrix Qs is built incrementally
through iterations based on actual state-action pair (s, a)
next state sn and respective reward r. Therefore the updated
block diagram is shown in the diagram in Fig. 5, where the
agent movement prediction is performed (by the prediction
block) and evaluated at each iteration using the vector
(s, a, r, s∗, n∗) updating the Qs function.

Qs(s, sn)← f(s, a, r, sn), (10)

where f is a reinforcement-based state-to-state function. An
example of parallel agent motion simulation that forms a
state predicted tree is shown in Fig. 6.

It must be noticed that even for a trivial case of M =
4 and N = 2, Qs is quite a huge matrix 2048 by 2048.
Nevertheless, if we choose to initialize it as zeros matrix
instead of random, this results sparse: the possible transitions
from one state to any other are fewer, as computed in the
equation:

n∗a = M ·N · nbk, (11)

where nbk is the number of black cells in the state space.
Therefore the worst case is n∗a = (M ·N)2, in our example
is n∗a = 64.

Fig. 6. Parallel agent simulation in state predicted tree for a four by two
state-space checkerboard. The light arrows and circles indicates possible
transitions and states of the virtual agent.

Fig. 7. MiniARM manipulator designed and built at DIEES, University of
Catania. It is a serial seven degrees of freedom manipulator with a pointer
as end effector.

IV. EXPERIMENTAL SETUP

The algorithm has been validated both in a three dimen-
sional simulation environment and with a real manipulator.

The considered robot is the MiniARM [11] (shown in Fig.
7), a custom built seven degrees of freedoms manipulator
with revolute joints.

The architecture for both simulation and hardware control
is sketched in a diagram in Fig. 8 Virtual Reality Model-
ing Language (VRML) models of simple environment and
manipulator (depicted in Fig. 9) have been realized in order
to have the same function interfaces as the real hardware
control devices. The highest level control is achieved with a
PC, while the low level control is performed with a 32 bit
mcu-based board. The PC-board communication is done with
a USB-serial interface, while the robot is position-controlled
through a RS485 serial bus.

Although positions are known and few, in the case study
the end-effector positioning is realized with inverse kinematic



Fig. 8. Hardware block diagram of the adopted experimental setup. High
level algorithms run on a PC-based platform. Both tri-dimensional kinematic
simulation and real hardware control have been implemented. Low level
control of the custom manipulator (i.e. the MiniARM) is achieved, through
a USB-to-serial converter, thanks to a 32 bit microcontroller-based custom
designed board. Lowest level motor control and angular joint readings are
decentralized in each servo.

Fig. 9. Simulated manipulator and target in the virtual environment.

algorithm for generality (an iterative novel strategy called
Mean of Multiple Computation MMC [12], [13]).

V. EXPERIMENTAL RESULTS AND COMPARISONS

A reinforcement learning algorithm, because of the high
parameter and particular strategy dependency, is not easy to
be numerically compared to other approaches. Under this
point of view a cross-comparison between predictive and non
predictive algorithm seemed a straightforward comparison.
Moreover the well known ACO meta-heuristic method [6]
is used as gold-reference to give idea of best achievable
performance without explicitly computing it.

Two different performance indexes have been chosen to
compare the proposed algorithm with respect to other clas-
sical SARSA-based approaches. The first is the normalized
number of steps needed for a single task achievement.

ns =
nsteps

nbk
(12)

where nsteps is the overall number of steps executed by
the agent while nbk is the number of black squares in the
checkerboard.

Fig. 10. Analyzed indexes in an experimental test. The dashed line indicates
the real data and the solid line (µ20) is the moving average computed with
the most recent twenty samples. Both ns and lt have been investigated in
order to understand different learning capabilities on tasks (i.e. avoid white
squares and choose shortest black squares path.

The second performance index is:

lt =
d− d∗b
nbk

, (13)

where d is the total distance traveled by the agent and d∗b is
the minimum distance between the end-effector starting po-
sition and the black squares. It is clear how though the min-
imum value for lt is l∗t = 1, not all configurations admit this
value as optimal sequence because of the distance between
black squares in initial state. A typical dynamical evolution
of the two indexes, chosen to evaluate system performance,
through iteration is shown is Fig. 10. As it is possible to
see, both indexes show a fast decrease through iterations.
Considering an average time per movement tavg = 1s, the
overall computational time requested per iteration is far less
and therefore, as discussed above, the number of real agent
actions can be kept low.

In order to compare the performances, a number of it-
eration of 1000 was chosen (i.e. number of real robot ac-
tions). Each robot experiment is completed in about tmax =
20 minutes (i.e. all together with computational time).

As shown in Fig. 11 and in Fig. 12, the presence of the
state transition model improves the learning time in terms of
number of actions performed from the real robot: both chosen
indexes show faster decreasing in presence of a predictive
model. It must be remarked that the ACO algorithm has
been implemented, for simplicity, to solve shortest path
sub-task without considering the actions leading to white
squares. Moreover, by using the ACO strategy the problem is
solved iteratively for a given static environment configuration
and it is not possible to extract a general model from the
data. Nevertheless, it is a quite good benchmark algorithm
because it provides a fast numerical sub-optimal solution for
a particular problem. For each RL iteration, iACO = 500
have been performed for a computational time tACO = 0.12s
per each solution. The color map depicted in Fig. 13 shows
the state-action weights matrix Q before learning. Iteration
after iteration the weight matrix changes its values. The color
map in Fig. 14 shows the same matrix after learning: as



Fig. 11. Normalized number of steps needed for task achievement. It
must be remarked that when the agent is able to avoid white squares (first
task achieved) ns = 1. Dashed line exploits the performance of the first
tested algorithm, without prediction. Solid line indicates the predictive model
performances.

Fig. 12. Summary of the experimental results on shortest path task
performance evaluation expressed through the index lt that is a function of
the over-length of the path traveled. Dashed line exploits the performance of
the first tested algorithm, without prediction. Solid line depicts the predictive
model performances, while the dotted line are the Ant-Colony Optimization
performances.

it is possible to see, all non-rewarding actions values are
decreased. As previously introduced, all described learning
results have been obtained using both simulations and the
real robot. Up to now no sensors have been applied for state
transition check. A laptop LCD monitor has been used for
solution visualization. Nevertheless, a touch sensitive panel
is a straightforward upgrade that can be used in order to close
the loop with the real hardware.

Snapshots from the real manipulator learning are shown
in Fig. 15.

VI. CONCLUSIONS

An application to shortest path discrete problem in real
hardware is presented. Both simulation and experimental
results show the improvement achieved thanks to the state-
transition model.

It must be remarked that a considerable improvement was
obtained in the real application because the number of actions
performed by the real agent (end-effector manipulator) was
heavily reduced. In fact, the virtual agent performs a lot of
simulated actions based on what previously learnt by the real
agent.

Fig. 13. Example Q-function before learning. In abscissa there are all the
possible 2048 states, in ordinate there are all the possible actions. As shown,
random high value (lighter) initializations have been chosen.

Fig. 14. Example of Q-function after learning. In abscissa there are all the
possible 2048 states, in ordinate there are all the possible actions. Due to the
binary coding of the states, the trained Q-function looks like a binary tree,
confirming the correct training. Nevertheless, high value stripes (lighter) in
low value areas (darker) indicates non-explored state-action pairs.

Comparison results with probabilistic methods, as Ant-
Colony Optimization, show that, though the latter shows a
lower index value than final performance index value of the
proposed strategy, these kinds of approaches cannot extract
the general model from the data.

ACKNOWLEDGEMENTS

The authors acknowledge the support of the European
Commission under the project ICT 216227 - SPARK II
“Spatial-temporal patterns for action-oriented perception in
roving robots II: an insect brain computational model”.

REFERENCES

[1] Honglak Lee, Yirong Shen, Chih-Han Yu, Gurjeet Singh and Andrew
Y. Ng, “Quadruped Robot Obstacle Negotiation via Reinforcement
Learning”, ICRA, 2006.

[2] Arthur P. S. Braga, Aluizio F. R. Araujo, “A topological reinforcement
learning agent for navigation” Neural Comput. and Applic., vol. 12, pp.
220-236, 2003.

[3] Bram Bakker, Viktor Zhumatiy, Gabriel Gruener and Jürgen Schmid-
huber, “Quasi-Online Reinforcement Learning for Robots”, Proc. IEEE
International Conference on Robotics and Automation, 2006.

[4] Kolter, Abbeel and Ng, “Hierarchical Apprenticeship Learning with
Application to Quadruped Locomotion”, NIPS 2008



Fig. 15. Example of sequence reproduction after learning process has been
successfully performed. A laptop LCD was adopted to visualize the solution.

[5] Andrew W. Moore and Christopher G. Atkeson, “Prioritized sweeping:
Reinforcement learning with less data and less time”, Machine Learn-
ing, Springer, vol. 13, pp. 103-130, 1993.

[6] Marco Dorigo and Thomas Stützle, “Ant Colony Optimization”, MIT
Press, 2004.

[7] Leslie P. Kaelbling, Michael L. Littman and Andrew W. Moore,
“Reinforcement Learning: A Survey”, Journal of Artilcial Intelligence
Research, vol. 4, 1996.

[8] Andrew G. Barto and Sridhar Mahadevan “Recent advances in hi-
erarchical reinforcement learning”, Discrete Event Dynamic Systems:
Theory and Applications, vol. 13, pp. 41-77, 2003.

[9] Sutton, R.G, Barto, A.G, “Reinforcement Learning: An Introduction” 2
ed. (sl): Mit Press. pp. 51-185,1998.

[10] Ribeiro, C.H.C., “A Tutorial on Reinforcement Learning Techniques”
in Proc. of International Conference on Neural Networks, INNS Press,
Washington, DC, USA, pp. 1-23, 1999.

[11] EU Project SPARK II, website online at
www.spark2.diees.unict.it/MiniArm.html.

[12] H. Cruse and U. Steinkuhler, “Solution of the direct and inverse
kinematics problems by a common algorithm based on the mean of
multiple computations”, Biol. Cybernetics vol. 69, pp. 345-351 2, 1993.

[13] P. Arena and L. Patané, “Spatial Temporal Patterns for Action Oriented
Perception in Roving Robots”, Springer, Series: Cognitive Systems
Monographs, vol. 1, 2009.


