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SUMMARY

Starting from the biological background on the olfactory architecture of both insects and mammalians,
different nonlinear systems able to respond to spatial-distributed external stimuli with spatial–temporal
dynamics have been investigated in the last decade. Among these, there is a class of neural networks that
produces quasi-periodic trajectories that pass near heteroclinic contours and prove to be global attractors
for the system. For this reason, these networks are called winnerless competition (WLC) networks. The
sequence of saddle points crossed by each trajectory depends on the spatial input presented to the network
and can be used as a ‘code’ representing a specific class of stimuli. Thanks to the intrinsic discrimination,
WLC networks are often used for classification. In this paper, this capability is exploited within a
framework for action-oriented perception. WLC networks are here used as bio-inspired architectures for
the association between stimuli and ‘percepts’. After presenting the theoretical basis of the WLC network
in the classic Lotka–Volterra system, we investigate how WLC networks can be formalized in terms
of cellular nonlinear networks (CNNs) hosting different kinds of cells: the FitzHugh–Nagumo neuron,
the Izhikevich neuron and the single layer CNN standard cell. In order to find efficient ways to code
environmental stimuli for action generation, we analyze and compare these WLC-based CNNs in terms
of number of generated classes and robustness against the initial conditions. Based on the simulation
results, we apply the best-performing system to solve a perceptual task involving navigation and obstacle
avoidance. We demonstrate how the large memory capacity shown by the WLC–CNN is able to contribute
to the new perceptual framework for autonomous artificial agents, where the association between stimuli
and sequences is learned through the experience. Copyright q 2008 John Wiley & Sons, Ltd.
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Studi di Catania, viale A. Doria 6, I-95125 Catania, Italy.

†E-mail: lpatane@diees.unict.it

Contract/grant sponsor: European Commission
Contract/grant sponsor: MIUR-PRIN

Copyright q 2008 John Wiley & Sons, Ltd.



506 P. ARENA ET AL.

1. INTRODUCTION

Recent neurophysiological studies have demonstrated the ability of animals to discriminate between
similar but slightly different odors, which is crucial for the survival in a hostile environment.
In particular, experiments on the mitral cells of the mammalian olfactory bulb [1] and on the
projection neurons located within the insect antennal lobes [2] have shown that these neurons,
involved in the second layer of sensation processing, are able to respond to different odors (or
mixtures of odors) with repetitive and reproducible sequences of firing activity and quiescence
[3]. Further, a deep analysis performed on the recorded activity of the 99 projection neurons of
a locust antennal lobe [4] has shown how the transient dynamics of the neural activity are more
effective in discriminate among different odors than the steady-state condition which, nevertheless,
is reached after a certain amount of time. These resulting spatial–temporal patterns of activity are
then projected toward the higher level processing centers like the mushroom bodies and the central
complex, in the insect brain [5].

To model the behavior shown in the olfactory system, a class of dynamical systems was proposed
in [6]: the winnerless competition (WLC) networks. These networks are able to transform a spatial-
distributed input into a spatial–temporal pattern realized by a quasi-periodic trajectory that pass
near a heteroclinic contour connecting saddle fixed points or saddle limit cycles, which corresponds
to the firing state of a neuron (or a subgroup of neurons). Such a closed orbit represents a global
attractor for the system [7] and, independently from the initial conditions, the trajectories tend
asymptotically to it. It is to be emphasized that the results above mentioned, as also summarized in
the following, were analytically formalized referring to three-species Lotka–Volterra systems (i.e.
third-order dynamics). The same results were generalized referring only to autonomous n-species
Lotka–Volterra systems, but, to the best of the author’s knowledge, no analytical results were
reported in the literature for general nth-order dynamics different from the Lotka–Volterra system.
Therefore, no rigorous formalization has been derived for the WLC behavior in cellular nonlinear
networks (CNNs) of nth dimension.

Based on these considerations, given that we need such a non-autonomous high-order dynamics
to show the emergence of perceptual states, we’ll refer to relevant neural models and for those
ones we’ll build CNN networks, deriving relevant conditions on the network parameters in order to
show the emergence of WLC relevant behavioral characteristics, useful to fulfill our classification
task. Referring to the classical WLC paradigm, the sequence of equilibria crossed by the trajectory
depends on the stimulus and encodes the essential information relying on it. In this way, these
main characteristics of WLC systems used for classification are:

• robustness to noise in the initial conditions,
• sensitivity to external stimuli,
• great number of possible classes.

Referring to the last feature, the advantage of this kind of approach with respect to coding with
attractors in terms of capacity of the network is evident considering that in a multistable system,
each class corresponds to a basin of attraction of one of the fixed points. Thus, for a system of N
neurons with N stable fixed points (or limit cycle), the maximum number of possible classes is N .
In a WLC network, the use of a transient dynamics in place of the steady-state equilibria greatly
improves the number of possible classes; the number of sequences is potentially e(N−1)! [6].

Starting from an analysis of the conditions for a Lotka–Volterra system to behave as a WLC
network, in this work, given the lack of analytical WLC conditions, we investigate the conditions
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for qualitatively reproducing the behavior of a WLC network by using locally connected CNNs
in which the basic cells belong to three classes: the FitzHugh–Nagumo (FHN) neuron [8], the
Izhikevich (IZH) neuron [9] and the single layer CNN standard cells [10]. The choice of these three
models was made to exploit the advantage of the WLC for different computational perspectives.
FHN neurons can be used as a plausible model to reproduce many behaviors shown by the biological
neurons, but introduce a high computational effort and can be used for computer simulation of a
bio-inspired sensory system. Although showing many relevant neural characteristics, IZH neurons
are less biological plausible, but not much time consuming and can be implemented in dedicated
digital hardware [11] with the advantage of behavior flexibility as a function of the parameters used.
The single layer CNN standard cells have the advantage of a straightforward and already existing
analog hardware implementation [12]: this guarantees high performance in terms of computation
time. On the other hand, CNNs have widely been demonstrated to be a paradigm for the generation
and also learning of complex spatial–temporal dynamics [13], some of them derived by biological
signals [14], even in single layer cells [15]. Moreover, complex spatial–temporal dynamics were
shown to take place also in digital hardware implementations [16]. For the proposed systems, we
studied how the sequence of active states is sensitive to the incoming stimuli and independent
from initial conditions, underlining the high capacity of the networks. We also present a compact
code representing each different sequence in order to extract from the spatial–temporal pattern a
compact information as a code for the class associated with the current stimulus.

Finally, we propose an application demonstrating the possibility to use a WLC network in an
artificial cognitive architecture in the challenging task of autonomous robot navigation where the
ability to correctly interpret the incoming stimuli is crucial in the presence of unpredictable and
potentially hostile situations. In particular, the WLC network plays the role of perceptual core
within an already developed control architecture [17], which models the sensing-perception-action
loop, where, instead of using an RD-CNN, we use a WLC network to generate the perceptual
states, and consider, in place of the emerging Turing patterns, the spatiotemporal patterns coded
by the sequence of activated neurons.

The sequence constitutes a compact representation of the surrounding environment and is asso-
ciated with an action by a selection network. To perform a given task, the robot is provided with
no a priori knowledge about the action to be associated with each pattern and learns by trial and
error. Learning is implemented by two mechanisms: an unsupervised learning acts at the sensing
block allowing the system to modulate the ‘basins of attraction’ of the sequences, while a simple
reward-based reinforcement learning builds associations between spatiotemporal sequences and
actions.

In the next section we will describe the WLC theoretical background in the classic Lotka–
Volterra system, in Section 3, the different CNNs showing the WLC-like behavior are shown and
analyzed, while in Section 4 we will present the application of one WLC network in a perceptual
architecture for the autonomous navigation. Finally, in Section 5, we draw the conclusions and
present the possible developments which are currently under investigation.

2. WLC IN LOTKA–VOLTERRA SYSTEM

In this section, we briefly review the principle of WLC network, which has been theoretically
introduced through the Lotka–Volterra system described by the following equation in the case of
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N units and with the presence of external forcing (Sk):

ẋk= xk ·
(
1−xk−

N∑
h=1,h �=k

�k,h ·xh
)
+Sk (1)

with k=1, . . . ,N , and where gk,h are the coupling coefficients between the cells of the network.
In order to have at least two different sequences, N�3. To obtain a theoretical formalization, let
us consider the simplest case, i.e. N=3 and Sk=0 (k=1,2,3) [7, 18, 19]

ẋ1 = f1(x1, x2, x3)= x1(1−x1−�1x2−�1x3)

ẋ2 = f2(x1, x2, x3)= x2(1−�2x1−x2−�2x3)

ẋ3 = f3(x1, x2, x3)= x3(1−�3x1−�3x2−x3)
(2)

where �1=�1,2, �2=�2,3, �3=�3,1, �1=�1,3, �2=�2,1 and �3=�3,3. The system has four classes
of solutions:

• the origin, i.e. x1= x2= x3=0,
• the axial fixed points, i.e. xk=1, xh=0 (h �=k),
• the planar fixed points, i.e. xk=0, xh �=0 (h �=k),
• interior fixed point, i.e. xk �=0 (k=1,2,3).
Assuming that xk>0 (k=1,2,3), neither (0,0,0) nor the two-component equilibrium points

are stable. Hence, we focus attention to the one-component equilibrium point e1 = (1,0,0), e2 =
(0,1,0), e3 = (0,0,1) and to the remaining fixed point p = (p1, p2, p3). The stability of these
solutions depends on the coupling coefficient �i and �i as shown by the Jacobian matrix:

J=−� fk
�xh
=
⎛
⎜⎝

(1−2x1−�1x2−�1x3) �1x1 −�1x1

−�1x2 (1−�2x1−2x2−�2x3) −�2x2

−�3x3 −�3x3 (1−�3x1−�3x2−2x3)

⎞
⎟⎠ (3)

In the following subsections, we consider the possible dynamics shown by the system depending
on the connection parameters.

2.1. Symmetric connections

In the case of symmetric connections, the system cannot generate complex temporal patterns.
Rather, energy must decrease monotonically along any trajectory in state space or remains constant:
the system can only move to a local minimum and stay there.

Two cases are possible:

• �i=�i=� (i=1,2,3),
• otherwise.

In the first case (symmetric and identical connections), the interior fixed point is

xk= 1

1+2� (4)

with k=1,2,3.
Note that this consideration can be extended to the case of N neurons obtaining for k=1, . . . ,N :

xk= 1

1+�(N−1) (5)
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Linearizing around each equilibrium and studying the stability, we can derive that, if �<1, the
three one-component equilibrium points (xk=1, xh=0 if h �=k) are saddles and the interior point
is stable, vice versa if �>1, hence:

• if �<1, the system has 1/(1+2�) as global attractor (Figure 1),
• if �>1, the system has N stable fixed points xk=1, xh=0 with h �=k (Figure 2).

The first case is called weak competition, whereas the second one is referred as multistability for
obvious reasons.

If the connections are symmetric, but not identical, (i.e. �1=�2=�, �2=�3=� and �3=�1=�),
the stability of both the one-component equilibrium points and fixed interior point depends on the
three parameters, but also in this case we have:

• if �,�,�<1 (or only one of these is greater than 1), the system has a global attractor with
simultaneous, but not identical activity of all the neurons,
• if two among �,�,� are greater than one, the system has a global attractor corresponding to

an identical activity of two cells,
• if �,�,�>1, the 3 fixed points xk=1, xh=0 with h �=k are stable (Figure 2).

2.2. Asymmetric connections

In the case of asymmetric connections, for N=3, two cases arise:

• the system has a partial symmetry (e.g. �1��2;�1,�2>1;�3,�3<1),
• the system has a strong asymmetry (�k,h �=�h,k).

In the first case, the two state variables with quasi-symmetric connections mutually inhibit each
other and the third one becomes active stabilizing at the value of 1 (Figure 3): this condition
represents the global attractor for the system (winner take all condition).
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Figure 1. Behavior of the Lotka–Volterra system with N=3 and S=0 when the coupling coefficients are
symmetric, identical and weak: �k,h=�=0.7, k �=h.
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Figure 2. Behavior of the Lotka–Volterra system with N=3 and S=0 when coupling coefficients are
symmetric, identical and strong: �k,h=�=2, k �=h. The three pictures were obtained varying the initial

conditions and demonstrate the multistability.
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Figure 3. Behavior of the system with partially asymmetric connections (winner take all): �1,2=�2,1=1.5,
�1,3=2, �3,1=0.5, �2,3=1.5 and �3,2=0.5.

In other terms, there are two unstable (saddle) points, corresponding to the activation of the two
state variables with quasi-symmetric connections, and one stable fixed point, corresponding to the
activation of the third state variable. The interior point is unstable.

In the second case, the three one-component equilibrium points are all saddle points of order 1
(two stable eigenvalues). Let us study the stability of the interior equilibrium point in simplified
case of �i=�<1 and �i=�>1 (i=1,2,3).

Case 1 (1−�)<(�−1): Hence the interior point is stable in the first direction, whereas in the
other directions we have unstable orbits. The global behavior is a non-periodic albeit almost cyclic
phenomena (Figure 4).

Case 2 (�+�=2): A Hopf bifurcation occurs and there is a family of neutrally stable periodic
solutions and a limit cycle branches from the fixed point.

Case 3 (�+�<2) with �<1 and �>1: Hence, the interior fixed point is stable and the system
converges to it.

If we define the parameter �i=(�i−1)/(1−�i ) (i=1,2,3), we can classify the behavior into
three cases: (1) �1�2�3>1, then a heteroclinic contour consists of saddle equilibrium points and
separatrices connecting these equilibria. The contour can serve as an attracting set if every saddle
point has only one unstable direction; (2) �1�2�3>1, if a small disturbance is able to destroy
the heteroclinic orbit, then a stable limit cycle appears in its proximity where exists a family of
neutrally stable periodic solutions; (3) �1�2�3<1: the interior point becomes a global attractor.

The case (1) is defined as WLC case, because from every initial condition, the trajectory is
attracted by one of the one-dimensional fixed points, then escapes along the only unstable direction
toward another saddle. Thus, the sequence of saddles crossed by the trajectory does not depend
on the specific initial condition, but is ‘written’ in the connection parameters.

In the next section, we extend the case to more complex networks where the connection
parameters are fixed, but the presence of an additive term, as external forcing, is able to determine
the sequence that plays the role of global attractor for the system.
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Figure 4. Behavior of the system with strongly asymmetric connections (winnerless competition): �1,2=1.5,
�1,3=�2,1=�3,2=0.5, �2,3=�3,1=2.

3. WLC-LIKE BEHAVIOR IN CNNs

In this section, we show how the WLC principle can be extended to dynamical systems representing
biologically plausible neural networks, which are activated by the presence of external stimuli and
quiescent otherwise

ẋk= f (x)−
N∑

h=1,h �=k
Gk,h(S) ·[x1k , x1h ]+Sk (6)

with k=1, . . . ,N and where:

• N is the number of neurons in the network,
• xk is the vector of the state variables of the neuron k,
• f (·) is a nonlinear function
• Gk,h ·[·, ·] describes the inhibitory effect of the neuron h onto neuron k,
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• x1k , x
1
k are the state variables describing the membrane potential of the neuron k and h,

respectively,
• S is the vector of the external forcing, and Sk is the kth component of S.

In a system belonging to this class, the external stimuli S act onto the inhibitory connections
between the neurons and/or as an additive forcing.

As already outlined, the theoretical formalizations of the WLC have been originally shown in the
three-species Lotka–Volterra system. The extension to the case of a nonlinear system in the general
form of 3 is at the basis of the exploitation of the WLC behavior in CNNs. This extension leads
to the loss of a general rigorous demonstration of the WLC conditions, even if the main dynamics
of such systems is captured by the Lotka–Volterra system [6]. In order to theoretically prove the
WLC behavior for a specific nonlinear system, i.e. after setting the dynamics of the cells and the
stimuli patterns, a possible way to follow is suggested in [7], where the authors demonstrated
the existence and the stability of the heteroclinic contour in the case of nth-order Lotka–Volterra
system, even if only in the case of autonomous equations. However, a rigorous demonstration of
the WLC behavior for a specific system is outside the scope of this work, which aims at exploiting
the potentialities of the CNN as a nonlinear dynamic classifier when showing aWLC-like behavior,
i.e. a fixed sequence of cell activation dynamics, as a function of the external input.

Under these considerations, we propose a heuristic definition of a WLC-like behavior based on
the main features derived in [3, 6]. Therefore, in terms of phase space behavior, a system can be
defined as a WLC network when:

• the trajectories evolve near a heteroclinic orbit crossing unstable states,
• the sequence of the unstable equilibria crossed is sensitive to the stimuli,
• given the stimuli, the trajectory obtained is a global attractor for the system.

In this paper, we extend the WLC principle to the class of 2D 3×3 locally connected CNNs. To
do this, we consider the case of Gk,h(S)=gk,h , i.e. independent from the external stimuli S. The
choice for the strength of the inhibitory connections g j,i has to reflect the considerations for the
asymmetry that triggers the WLC behavior in the Lotka–Volterra system. A possible configuration
for the parameters is graphically represented by the topology of Figure 5. In fact the 9×9 inhibitory
connection matrix, which corresponds to the topology, proves to be strongly asymmetric, as we
reported below:

g=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 g2 0 0 g1 0 0 0 0

g1 0 0 g1 g2 g1 0 0 0

0 0 0 0 g2 g1 0 0 0

0 g2 0 0 g1 0 g2 g2 0

b g1 g1 g2 0 g2 g1 g1 g2

0 g2 g2 0 g1 0 0 g2 0

0 0 0 g1 g2 0 0 0 0

0 0 0 g1 g2 g1 0 0 g1

0 0 0 0 g1 0 0 g2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)

Although many different choices are possible with g1>g2 or vice versa, we set g1=2 and g2=0
for all the simulations presented in the following.
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Figure 5. Topology of a 2D 3×3 cellular nonlinear network with asymmetric connection. The solid
arrows represent inhibitory connections between the cells with a strength a, whereas the thin arrows

refer to inhibitory connection with strength b.

As stated above, the specific dynamics of each cell can be chosen in different ways; hence, in
the following subsection, we will implement the network with three kinds of neurons: the FHN
neurons, the IZH neurons and the single layer CNN standard cells for the reasons discussed in the
introduction.

3.1. FHN neurons

The first case is a network of 3×3 locally connected FHN neurons [8], where each cell (i, j) of
the network is represented by a third-order nonlinear system

�1 ẋi, j = f (xi, j )− yi, j−zi, j ·(xi, j−	)+0.35+Si, j ẏi, j= xi, j−byi, j+a
�2 żi, j = ∑

C(k,l)∈N1(i, j)
gkl,i j G(xk,l)−zi, j (8)

with i, j=1,2,3, where gkl,i j is the strength of the inhibitory connection of the cell C(i, j) on
the cell C(k, l) and where

N1(i, j)=C(k, l)|max(|k−i |; |l− j |)<1 (9)

with k, l=1,2,3, where C(k, l) is the cell of position (k, l) and N1 is the neighborhood of radius 1.
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Figure 6. Dynamics of the first state variable of each FHN neuron used in the 3×3 network reported
in Figure 5, in presence of the set of constant stimuli S1=[0,0,0.01,0,0,0.01,0.05,0,0.01] for

200 s of simulation. The amplitude of the variables was scaled in the range [0,1].

For each cell C(i, j):

• xi, j is the membrane potential,
• yi, j is the recovery variable,
• zi, j is the synaptic current modeled by a first-order dynamics,
• f (xi, j )= xi, j− 1

3 x
3
i, j is the FHN neuron internal nonlinearity,

• Si, j is the external stimulus to neuron i, j ,
• G(xi, j ) is the Heaviside function.

The parameters used in the simulations were a=0.7, b=0.8, �1=0.08, �2=4.1, 	=−1.5.
The behavior of the network with the chosen parameters proves to be strongly influenced by

the input and marginally by the initial conditions, demonstrating a WLC-like behavior. Figure 6
depicts the dynamics of the network: in general, each neuron shows resting phases alternating with
the activation phases in which they fire (spiking or bursting). After a transient phase, the activation
sequence among the neurons maintains constant; hence, it is possible to code the sequence
of activation of the neurons following the temporal order, i.e. in the example 7-3-1-8-2-5-4-9.
This sequence is made up by the activation of eight neurons, being neuron six always
quiescent.

3.2. IZH neurons

Another possible neuron model that has been used was proposed by IZH [9], which is able to
reproduce almost all the possible dynamics of the biological neurons with the computational
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effectiveness of the integrate-and-fire neuron. The cell of the network has, in this case, the form

˙xi, j = 0.04x2i, j+5xi, j+140− yi, j+ Ii, j

˙yi, j = a(bxi, j− yi, j )

˙zi, j = ∑
C(k,l)∈N1(i, j)

gkl,i j G(xk,l)−zi, j
(10)

with the spike-resetting:

if xi, j � 30mV then

{
xi, j←c

yi, j←u+d (11)

N1(i, j)=C(k, l)|max(|k−i |; |l− j |)<1 (12)

with k, l=1,2,3, where C(k, l) is the cell of position (k, l) and N1 is the neighborhood of radius 1.
Again, xi, j , yi, j are dimensionless variables representing the neuron’s membrane potential and

the recovery variable, Ii, j is the input current, whereas a, b, c and d are system parameters that
determine the kind of dynamics showed by the neuron.

To obtain both dynamics similar to the one shown by the FHN network and a WLC-like behavior,
the parameters have been chosen experimentally among the model for the phasic bursting behavior
[9] and in particular they are: a=0.05, b=0.28, c=−50, d=0.05. Figure 7 shows the dynamics
of a 3×3 network with these parameters for a given choice of the external stimuli.

3.3. Single layer CNN standard cells

Alternatively, to implement a cell of the network, it is possible to use a less biologically realistic
(but straightforward to be implemented) first-order system that corresponds to the traditional CNN
standard cell [10]

ẋi, j = −xi, j+ ∑
C(k,l)∈N1(i, j)

Ai, j yk,l+Bi, j ui, j

yi, j = 0.5(|xi, j+1|−|xi, j−1|)
(13)

with i, j=1,2,3 and where

N1(i, j)=C(k, l)|max(|k−i |; |l− j |)<1 (14)

with k, l=1,2,3, where C(k, l) is the cell of position (k, l) and N1 is the neighborhood of radius 1.
The additive stimuli are represented by the ui, j inputs to the CNN.

Using this network, we have the advantage of much reduced computational effort and possible
hardware realization [12].

The WLC-like behavior of the first-order CNN standard cell for both a network of three cells
and a 3×3 system was shown in [20] where the 9×9 connection matrix is reported in terms of
space-varying templates A and space-invariant template B.
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Figure 7. Dynamics of the first state variable of each Izhikevich neuron, used in the 3×3 network reported
in Figure 5, in the presence of the set of constant stimuli S1=[0,0,0.01,0,0,0.01,0.05,0,0.01] for 200 s

of simulation. The amplitude of the variables was scaled in the range [0,1].

The dynamics of the cells of the 3×3 network are shown in Figure 8.

3.4. Coding the heteroclinic orbit

The heteroclinic orbit depends on the external forcing, thus any set of input stimuli can be classified
by using the resulting orbit as a code representing a class.

A possible choice for the code to be associated with the trajectory shown by the WLC-like
systems is obtained by looking at the activation timing of each cell. In this way, the sequence
m−n− p means that the cell m is the first to fire, the cell n is the second and cell p is the
third one. Extending the code to the more complex and larger networks, if the number of cells
in the network is less than 9 a simple integer code can be associated with each sequence simply
by enumerating the cells. Hence, if, in the case of the three neurons network, cell m is repre-
sented by 1, cell n by 2 and cell p by 3 the sequence becomes 1-2-3. It should be noticed that
1-2-3, 2-3-1 and 3-1-2 constitute the same sequence. To have a unique representation for any
sequence, we will code any sequence starting from the smallest number (e.g. for the previous
case, we will choose 1-2-3 as the code). In case of the 3×3 system proposed in the previous
subsections, it is necessary to handle the synchronization between two or more cells. To do
this, if both the activation times of two cells of the network fall in a small pre-defined time
window, we consider the two cells synchronized and we order them in the code starting from the
smallest.
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Figure 8. Dynamics of the first state variable of each single layer CNN standard cell, used
in the 3×3 network reported in Figure 5, in the presence of the set of constant stimuli
S1=[0,0,0.01,0,0,0.01,0.05,0,0.01] for 200 s of simulation. The amplitude of the variables

was scaled in the range [0,1].

This coding mechanism is a slight simplification of the one proposed in [20] and reduces the
number of classes, which can be distinguished, but is less expensive in terms of computational
effort and memory.

3.5. Classification performance of the systems

In this subsection, we explore the classification performance of the three proposed networks in
terms of number of classes, computational effort and robustness (repeatability).

With this aim, we scaled the dynamics of the first state variables of all the systems in the range
[0,1] and let the external stimuli vary in the nine-dimensional hypercube [0,0.2]9, where the first
two systems have a busting behavior, while the cells of the single layer CNN show oscillations
between a high and a low level, and we randomly choose 500 sets of stimuli belonging to this
region. Then, for each system, we perform a simulation made of 500 trials varying the additive term
according to the previous choice setting the initial conditions at a fixed value and then repeating
the experiment varying the initial conditions at each trial. The results are summarized in Table I.

The misclassification rate, i.e. the percentage of codes resulting to be different in the trials
with different initial conditions, could seem to be quite high (in Table I we refer to robustness to
indicate the inverse of misclassification rate). Nevertheless, most of the misclassifications occur at
the boundary between two classes and could be solved with a better choice of the code, which in
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Table I. Classification performance of the three proposed networks: the FitzHugh–Nagumo networks, the
Izhikevich networks and the one layer CNN.

System Classes Robustness (%) n. flops

FHN 402 81 22+2∗8
IZH 27 40 20+2∗8
CNN 3 91 9+6∗8
The column Classes indicate the total number of different classes emerged in the 500 trials made varying
the set of stimuli, whereas the column Robustness refers to percentage of the total trials where the sequence
emerged using fixed initial conditions resulted to be equal to the one evaluated starting from initial conditions
randomly chosen in the range [0,1]. Finally, n. flops is the number of floating point operations needed for the
integration step of one cell.

this case does not completely allow to guarantee the robustness of the classification. The results
demonstrate how the FHN network presents the highest number of possible classes with a good
robustness, a medium number of floating point operations for a digital implementation, while it is
heavy to implement in hardware due to the cubic operator. The IZH network has much less classes
and it is much less robust against variations in the initial conditions, even if it has the least number
of floating points operations. The CNN is very poor in terms of number of classes, but very robust
against variation in the initial conditions. The latter features and the existence of the hardware
chip [12] make it the best solution for an analog hardware implementation for applications where
a little number of classes is enough. It should be noticed that the number of sequences of both
the CNN and the IZH network would double if the hypercube is enlarged to the negative values,
while all the systems slightly increase the number of classes if the hypercube is enlarged to higher
positive values.

In order to provide a graphical overview of the classification of the external stimuli performed
by the three systems, we consider a bi-dimensional subsection of the space of the stimuli and show
the different sequences emerged varying the stimuli within this region. In particular, we chose to
vary the stimuli associated with neuron 2 and neuron 7 and keep fixed the value of the stimuli in
the other seven neurons. For the two selected neurons, the stimuli, referred in the following as S1,2
and S3,1, were varied in different range for the three systems in order to exploit their features. In
particular, it should be noticed that the system with single layer CNN standard cells maintains a
WLC-like behavior in the largest range. In any case, we divide the range of variation of the stimuli
in 21 steps, thus for each system, we performed 21×21=441 trials in our simulation, evaluating
the code from the resulting sequence. Figures 9–11 show the results of the simulations for the
three systems. It should be noticed how the geometry of the classes presents a high regularity in
the case of FHN neurons and single layer CNN standard cells, while they are very ‘disordered’ in
the case of IZH neurons.

4. APPLICATION TO PERCEPTUAL ARCHITECTURE

The results about the classification performance of the three systems lead us to choose the FHN
system, even if the digital implementation prevents us from the misclassifications and the IZH
system is the least time consuming in this domain. Indeed, the highest number of possible classes
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Figure 9. Network of FitzHugh–Nagumo neurons: results of the simulation obtained varying the stimuli
for the neuron 2 and for the neuron 7 in the range [0,0.5] (step of 0.025) and keeping fixed to 0 the

stimuli for the other cells. The number of classes emerged is 32 for the 441 trials.
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Figure 10. Network of Izhikevich neurons: results of the simulation obtained varying the stimuli for the
neuron 2 and for the neuron 7 in the range [−0.1,0.1] (step of 0.01) and keeping fixed to 0 the stimuli

for the other cells. The number of classes emerged is 24 for the 441 trials.
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Figure 11. Network of single layer CNN standard cells: results of the simulation obtained varying the
stimuli for the neuron 2 and for the neuron 7 in the range [−0.5,0.5] (step of 0.05) and keeping fixed to

0 the stimuli for the other cells. The number of classes emerged is 14 for the 441 trials.

Figure 12. Functional block diagram of the implemented framework.

and the heavy regularity of the geometry of the classification regions (Figure 9) suggests to use
the FHN system for perceptual purpose [21].

The perceptual architecture is the same introduced in [17] and is made up of four main blocks
(Figure 12): the sensing block that receives the external stimuli; the perceptual block that builds
up a representation of the environment; the action selection table that triggers an action to the
effectors; the difference of reward function (DRF) block, which evaluates the goodness of actions
driving the learning process.

In the following we will refer to iteration to indicate a single robot action, while we will call
cycle the whole set of iterations between two consecutive target findings.
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Figure 13. (a) Position of the distance sensors on the robot: F , L , R are front, left and right side sensors,
respectively and (b) structure of the FHN network and input for the neurons. Six cells are injected with
a current proportional to the obstacle stimuli (front, left and right side obstacle sensors), while two other

cells have an input current related to the phase between target and robot orientation.

4.1. The control block

The simulated robot is provided with three distance sensors (covering the front, left and right side
of the robot) for the detection of obstacles (Figure 13a). Another sensor provides the angle between
the robot orientation and the robot–target direction. This information could come in different ways
depending on the specific task: it could come from a network that processes the auditory stimuli
in cricket phonotaxis [22], or it could be extracted from the visual field by using landmarks.

Each sensing stimulus is the input for a sensing neuron (SN) endowed with a piece-wise linear
activation function made up of 10 amplitude-varying steps. The amplitudes of the steps are learned
in an unsupervised way, as explained in the following. Finally, each output of the SNs is the input
for a cell of the WLC network representing the perceptual core.

The aim of the perceptual core is to build up, on the basis of the incoming stimuli, abstract
representations of the external world that trigger specific actions. These mechanisms are modulated
by the experience thanks to learning. The perceptual core is a 3×3 cellular nonlinear system
with FHN neurons and the connection matrix able to generate a WLC behavior presented in the
previous section. The coded sequence obtained at each step represents the class of the current set
of stimuli.

The choice of the cells, where to inject the current input Si, j (Figure 13(b)), is discussed in [21].
To finely represent different environmental situations, it would be feasible to have a large number
of spatiotemporal patterns (i.e. sequences), but the pattern control would risk to be less effective.
As seen in the previous section, using fixed connections between the cells represent a trade-off
between the amount of different sequences and easiness of control, because this limits the number
of possible classes from e ·(8!) to around two hundreds, bounding the output of the SNs in the
range [0,0.1].

We let the WLC network evolves and, once a sequence is recognized, its code is stored in a
sequence vector at the first occurrence.

The use of a WLC network allows us to fuse lots of heterogeneous sensory information into
a spatiotemporal pattern. At each step, the information coming from sensors is fused to form a
unique abstract representation of the environment.
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The action selection network associates each element q of the pattern vector with an action
Aq . An action consists of two elements, the module and the phase of the robot movement setting,
respectively, the translational step and the rotation. Each element q of the pattern vector is connected
to two weights, wq,m and wq,p, representing, respectively, module and phase of the action Aq . In
this paper, we keep the fixed weight wq,m=wm for all the patterns and vary only the wq,p through
a reward-based reinforcement learning implemented by a simplified motor map (MM) [23, 24].
Emulating the associative learning in animals, we determine the goodness of an action by means
of a reward function (RF) defined as follows:

RF=−∑
i
ki · fi (Di )−h · fT(|
T|) (15)

where Di is the distance between the robot and the obstacle detected by the sensor i (i=F, R, L),
�T is the angle between the robot orientation and the direction connecting robot and target, while ki
and h are positive constants determined during the design phase. The aim of the learning algorithm
is to maximize the RF: small absolute values in Equation (15) indicate good situations for the robot.
The goodness of an action performed at the step t is provided by DRF(t)=RF(t)−RF(t−1).
A positive (negative) value for DRF indicates a successful (unsuccessful) action. Successful actions
are followed by reinforcement, like in Skinner’s experiments [25].

SNs are responsible for transforming the incoming stimuli into inputs for the WLC network,
which will show a spatiotemporal sequence of activation represented by the timing of the bursting
activity of the neurons.

Our choice for the SNs activation function consists in an increasing function constituted of 10
amplitude-varying steps, �i (1�i�10), covering the whole input range [−1,1]. At the beginning
of the learning phase, all the steps have zero amplitude. At each step, if the performed action
has positive effects (DRF>0), then the amplitude of the step does not change. Otherwise, when
the action proves to be negative, the amplitudes of the steps are modified randomly in order to
modulate the association between stimuli and resulting spatiotemporal patterns. The idea is that,
when the action associated with the previous situation is no longer able to make the robot succeed
in accomplishing the current task, a new pattern/situation should emerge and the suitable action to
this new environmental condition has to be learned by the robot. In such a way the sensorial stimuli
will be divided into classes associating different situations with patterns that generate positive
actions. The output of the SNs is in any case bounded in the range [0,0.1]. More details on the
whole mathematical model are given in [17] and in [21].

4.2. Simulation results

The software simulation environment allows to create an arena constituted by walls, obstacles
and targets. Moreover, in the arena a robot, equipped with a distributed sensory system, can be
simulated.

The dimensions of the arena are 380×313 pixels and it is filled by obstacles and a target. The
simulated robot is equipped with three distance sensors placed in the left, front and right side of
the robot and one target sensor. The left and right side sensors are at 45◦ from the longitudinal
axis of the robot (Figure 13(a)). All the distal sensors can detect obstacles within a limited range
of 50 pixels and a visual field of [−10◦,10◦]. The simulated target is a sound source that can be
sensed by two microphones providing information on the angle between the robot orientation and
the robot–target direction.
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All the sensor outputs are scaled in the range [−1,1]. In this application, we design a linear
RF; hence, it components (15) are defined as:

• fF(DF)=−(1−0.5(DF+1))
• fL(DL)=−(1−0.5(DL+1))
• fR(DR)=−(1−0.5(DR+1))
• fT(�T)=−1∗|�T|

where DF, DR, DL are the scaled distances detected by the sensors. In the following simulations,
the choice for the other parameters in Equation (15) was: kF=70, kL=kR=40 and h=40. In this
way, more importance is given to the contribution of the obstacle information than the target one
because it is crucial for avoiding collisions. In particular, the output coming from the front side
obstacle sensor has the greatest weight in the RF. Through the definition of this RF, we give to
the robot knowledge about the task to be fulfilled, but it has no a priori knowledge about the
correct way to interact with the environment. Thus, the phase of the actions associated with each
pattern is randomly initialized within the range [−0.05rad,0.05rad]. As far as the simulated robot
is concerned, the task given to the robot consists in aiming a sound source avoiding obstacles.
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Figure 14. Result of the unsupervised learning of the amplitudes of the steps of the SNs
activation functions related to the left, right and frontal distance sensor, and to the target

sensor associated with the phase of the sound source.
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Figure 15. Number of new sequences emerged during the learning phase.

The learning phase consists of 200 trials, where a trial is made of a limited sequence of actions
allowing to reach the target.

At the beginning of the learning phase, the robot performs random actions due to the random
initialization of the phase weights wq,p, which determine the robot heading. During the learning
process, the MM-like algorithm corrects the action associated with each pattern. After the learning
phase, the simulated robot has acquired the ability to aim the sound source. Figure 14 shows
the result of learning the amplitudes of the steps for all the SNs activation functions, whereas
Figure 15 figures out how the number of new sequences in time decreases with the learning
evolution demonstrating the convergence of the learning at the afferent layer. In terms of robot
performance, the result of the learning consists in a strong reduction of the number of the robot’s
steps between two consecutive target findings as shown in Figure 16. Once having completed the
learning phase, the testing phase shows the ability acquired to safely navigate and reach the audio
(target) source in presence of obstacles. In the testing phase, the agent has been able to find the
audio source starting from different initial conditions without hitting obstacles. Figure 17 reports
some examples of such a behavior.

Further investigations will be devoted to understand how the emerging sequences could be
associated, through learning, with motor sequence able to achieve more complex tasks.

5. CONCLUSIONS

In this paper, we review the analytical principle of the WLC network in the case of Lotka–Volterra
system to serve as the computational core within a more complex spatial–temporal architecture
for action-oriented perception. Moreover, we have extended the WLC behaviour to the class of
the CNN after having formalized a WLC-like behavior based on heuristic considerations, due to
the lack in theoretical results. In order to assess the suitability of the approach, we took into
account in this paper a number of different cells, investigating their capability to work as realtime
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Figure 16. Number of steps between two consecutive target findings: each of the 20 values represents the
mean number of steps needed to find a target in a window of five consecutive target findings.
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Figure 17. Trajectory followed in the test after learning. The agent reaches the audio source starting from
five different initial conditions.

input signal classifiers. We have shown how a suitable choice for the connection parameters
in a 2D 3×3 CNN can lead to a WLC-like behavior for various kinds of cells. Subsequently,
we analyzed the characteristics of WLC–CNN networks built using FHN neurons, single layer
CNN standard cells and IZH neurons, outlining their performances in terms of robustness and
number of classes. This feature is, in the case of WLC networks, much greater than a multistable
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network due to the temporal coding, more powerful than coding with attractors. In all the presented
cases, the dynamics obtained exhibits repetitive time-locked activity of the cells, in analogy to the
polichronization of a spiking network proposed by IZH [26]. We found that only the FHN neurons
present features of both high capability and good robustness, while the single layer CNN standard
cells are very robust, but poor in terms of number of classes. The natural application is to the
classification problem, but we have also shown the application to a recently designed perceptual
architecture, where the WLC net represents the core for the classification of external stimuli. The
huge, in principle, number of different spatiotemporal sequences, depending only on input signals,
guarantees robustness to the emerging attractor, which becomes, once associated to an action, ‘the
mirror’ of the environment for motor purposes. This new application of the WLC-based perceptual
motion, uses these networks as sequence generators, that reflect the spatial–temporal motion of a
roving robot within a physical world. Thus, the robot navigation task can be seen as the spatial–
temporal sequence of WLC generated codes, constituting the robot internal representation of the
external world.
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16. Földesy P, Zarándy Á, Rekeczky C, Roska T. Digital implementation of cellular sensor-computers. International
Journal of Circuit Theory and Applications 2006; 34(4):409–428.

17. Arena P, Crucitti P, Fortuna L, Frasca M, Lombardo D, Patané L. Turing patterns in RD-CNNs for the emergence
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21. Arena P, Fortuna L, Lombardo D, Patanè L, Velarde MG. The WLC principle for action-oriented perception.
Proceedings of SPIE, Europe, 2007.

22. Webb B, Scutt T. A simple latency dependent spiking neuron model of cricket phonotaxis. Biological Cybernetics
2000; 82(3):247–269.

23. Schulten K. Theoretical biophysics of living systems. In Neural Computation and Self-organizing Maps: An
Introduction, Ritter H, Martinez T, Schulten K (eds). Addison-Wesley: New York, 1992.

24. Arena P, Fortuna L, Frasca M, Sicurella G. An adaptive, self-organizing dynamical system for hierarchical control
of bio-inspired locomotion. IEEE Transactions on Systems, Man and Cybernetics, Part B 2004; 34(4):1823–1837.

25. Skinner BF. About Behaviorism. Alfred Knopf: New York, 1974.
26. Izhikevich EM. Polychronization: computation with spikes. Neural Computation 2006; 18:245–282.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2009; 37:505–528
DOI: 10.1002/cta


